Informatics Tools for Recording/Tracking Dose

Kevin O’Donnell
Senior R&D Manager
Toshiba Medical Research Institute
Co-Chair, DICOM Standards Committee
Past Chair, IHE Radiology Planning Committee
Standards & Tools
Learning Objectives

1) DICOM Radiation Dose SR (RDSR)
 - capturing procedure dose information

2) IHE Radiation Exposure Monitoring Profile (REM)
 - coordinating the capture and management of RDSR objects
 - applying in a radiology practice.

3) "CT dose screens"
 - porting legacy scanner data into RDSR

4) MITA CT Dose Check (XR-25)
 - pre-scan dose pop-ups on the CT console

5) IHE Integration Statements & DICOM Conformance Statements
 - specifying these standards & features when purchasing and integrating radiology systems.
Headers & Screen Shots

- Useful but **limited**
- Missing details
- Not machine-readable
- Duplication issue
- Size issue

<table>
<thead>
<tr>
<th>Series</th>
<th>Type</th>
<th>Scan Range (mm)</th>
<th>CTDIvol (mGy)</th>
<th>DLP (mGy·cm)</th>
<th>Phantom cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Scout</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Helical</td>
<td>$15.750-1G50.250</td>
<td>5.10</td>
<td>373.00</td>
<td>Body 32</td>
</tr>
<tr>
<td>5</td>
<td>Helical</td>
<td>$188.000-1105.000</td>
<td>5.10</td>
<td>182.72</td>
<td>Body 32</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>555.72</td>
<td></td>
</tr>
</tbody>
</table>

Exam Description: CT HALS/THORAX/ABDOMEN

Patient Name: [Name]
Accession Number: [Accession Number]
Patient ID: [Patient ID]
Exam no:
Discovery CT750 HD
DICOM RDSR

Radiation Dose Structured Report Object

<table>
<thead>
<tr>
<th>NL</th>
<th>Rel with Parent</th>
<th>VT</th>
<th>Concept Name</th>
<th>VM</th>
<th>Req Type</th>
<th>Condition</th>
<th>Value Set Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>CONTAINER</td>
<td>EV (113019, DCM, "CT Acquisition")</td>
<td>1</td>
<td>M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>></td>
<td>CONTAINS</td>
<td>TEXT (125203, DCM, "Acquisition Protocol")</td>
<td>1</td>
<td>U</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>></td>
<td>CONTAINS</td>
<td>CODE (123014, DCM, "Target Region")</td>
<td>1</td>
<td>M</td>
<td></td>
<td>DCID (4030) CT and MR Anatomy Imaged</td>
</tr>
<tr>
<td>4</td>
<td>></td>
<td>CONTAINS</td>
<td>CODE (113620, DCM, "CT Acquisition Type")</td>
<td>1</td>
<td>M</td>
<td></td>
<td>DCID (10013) CT Acquisition Types</td>
</tr>
<tr>
<td>5</td>
<td>></td>
<td>CONTAINS</td>
<td>CODE (G-C320, SRT, "Procedure Context")</td>
<td>1</td>
<td>U</td>
<td></td>
<td>DCID (10014) Contrast Imaging Technique</td>
</tr>
<tr>
<td>6</td>
<td>></td>
<td>CONTAINS</td>
<td>UIDREF (113769, DCM, "Irradiation Event UID")</td>
<td>1</td>
<td>M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>></td>
<td>CONTAINS</td>
<td>CONTAINER (113222, DCM, "CT Acquisition Parameters")</td>
<td>1</td>
<td>M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>>></td>
<td>CONTAINS</td>
<td>NUM (113524, DCM, "Exposure Time")</td>
<td>1</td>
<td>M</td>
<td>Units = EV (s, UCUM, "s")</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>>></td>
<td>CONTAINS</td>
<td>INCLUDE (10014) Scanning Length</td>
<td>1</td>
<td>M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>>></td>
<td>CONTAINS</td>
<td>NUM (113526, DCM, "Nominal Single Collimation Width")</td>
<td>1</td>
<td>M</td>
<td>Units = EV (mm, UCUM, "mm")</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>>></td>
<td>CONTAINS</td>
<td>NUM (113527, DCM, "Nominal Total Collimation Width")</td>
<td>1</td>
<td>M</td>
<td>Units = EV (mm, UCUM, "mm")</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>>></td>
<td>CONTAINS</td>
<td>NUM (113528, DCM, "Pitch Factor")</td>
<td>1</td>
<td>M</td>
<td>IF row 4 equals (P5-0001, SRT, "Spiral Acquisition") or equals</td>
<td>Units = EV (ratio, UCUM, "ratio")</td>
</tr>
</tbody>
</table>
DICOM Dose Reports

- “SR Objects” – DICOM Structured Reports
 - Easily ingested (and regurgitated) by PACS

- Granularity: “Irradiation Event”
 - & Accumulated Dose over Study, Series

- Templates:
 - CT, Projection X-Ray (Mammo, Fluoro, DR/CR)
 - PET/NM (WIP)

- Not addressed: RT
Key Measurements

- **CT Dose**
 - DLP, CTDIvol, kVP, mA, sec, ...
 - Effective Dose [Optional; Reference estimation method]
 - SSDE (CP-1170) [Optional; see AAPM 204]

- **Projection X-Ray Dose**
 - DAP, Dose@RP, kVP, mA, sec, ...
 - Fluoro Dose, Fluoro Time
 - CR/DR: Exposure Index, Deviation Index

- **Mammography Dose**
 - AGD, Entrance Exposure@RP, kVP, mA, sec, ...
 - Compression, Half Value Layer

Other Details in Dose SR

- Full Patient / Order / Study Details
- Unique ID for each Irradiation Event
- Equipment ID, Ordering Doc, Performing Tech

- Patient Size, Orientation, Anatomy Imaged
- Imaging Geometry

- X-Ray Filtering & Collimation Details
- Anode Target Material
- Calibration, Phantom, Dosimeter, Patient Model
<table>
<thead>
<tr>
<th>NL</th>
<th>Rel with Parent</th>
<th>VT</th>
<th>Concept Name</th>
<th>VM</th>
<th>Req Type</th>
<th>Condition</th>
<th>Value Set Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>CONTAINER</td>
<td>EV (113819, DCM, "CT Acquisition")</td>
<td>1</td>
<td>M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>></td>
<td>CONTAINS TEXT</td>
<td>EV (125203, DCM, "Acquisition Protocol")</td>
<td>1</td>
<td>U</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>></td>
<td>CONTAINS CODE</td>
<td>EV (123014, DCM, "Target Region")</td>
<td>1</td>
<td>M</td>
<td></td>
<td>DCID (4030) CT and MR Anatomy Imaged</td>
</tr>
<tr>
<td>4</td>
<td>></td>
<td>CONTAINS CODE</td>
<td>EV (113820, DCM, "CT Acquisition Type")</td>
<td>1</td>
<td>M</td>
<td></td>
<td>DCID (10013) CT Acquisition Types</td>
</tr>
<tr>
<td>5</td>
<td>></td>
<td>CONTAINS CODE</td>
<td>EV (G-C32C, SRT, "Procedure Context")</td>
<td>1</td>
<td>U</td>
<td></td>
<td>DCID (10014) Contrast Imaging Technique</td>
</tr>
<tr>
<td>6</td>
<td>></td>
<td>CONTAINS UIDREF</td>
<td>EV (113769, DCM, "Irradiation Event UID")</td>
<td>1</td>
<td>M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>></td>
<td>CONTAINS CONTAINER</td>
<td>EV (113822, DCM, "CT Acquisition Parameters")</td>
<td>1</td>
<td>M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>>></td>
<td>CONTAINS NUM</td>
<td>EV (113824, DCM, "Exposure Time")</td>
<td>1</td>
<td>M</td>
<td></td>
<td>Units = EV (s, UCUM, "s")</td>
</tr>
<tr>
<td>9</td>
<td>>></td>
<td>CONTAINS INCLUDE</td>
<td>DTID (10014) Scanning Length</td>
<td>1</td>
<td>M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>>></td>
<td>CONTAINS NUM</td>
<td>EV (113826, DCM, "Nominal Single Collimation Width")</td>
<td>1</td>
<td>M</td>
<td></td>
<td>Units = EV (mm, UCUM, "mm")</td>
</tr>
<tr>
<td>11</td>
<td>>></td>
<td>CONTAINS NUM</td>
<td>EV (113827, DCM, "Nominal Total Collimation Width")</td>
<td>1</td>
<td>M</td>
<td></td>
<td>Units = EV (mm, UCUM, "mm")</td>
</tr>
<tr>
<td>12</td>
<td>>></td>
<td>CONTAINS NUM</td>
<td>EV (113828, DCM, "Pitch Factor")</td>
<td>1</td>
<td>M</td>
<td></td>
<td>IF row 4 equals (P5-08001, SRT, "Spiral Acquisition") or equals Units = EV ((ratio), UCUM, "ratio")</td>
</tr>
</tbody>
</table>
IHE REM Profile

Radiation Exposure Monitoring
IHE in One Slide

- IHE helps vendors implement & test functions that span multiple systems

- Profiles are implementation guides
 - how to use existing standards
 - to address a specific problem scenario

- Connectathons are test events
 - managed testing of Profile implementations

- IHE helps users purchase & integrate multi-system solutions
 - list required IHE Profile support in RFPs
Using SR Dose Reports

- **Radiation QA**
 - Periodically Query / Retrieve Reports from Archive
 - Set policies/standards and flag deviations
 - Set goals for improvement and track progress
 - Implement protocol changes and compare difference in dose

- **Regulation**
 - E.g. Automatically insert dose metrics into diagnostic reports

- **Patient Impact Evaluation**
 - e.g. if Patient identified as pregnant post-facto

- **Dose Mapping**
 - Store data in realtime from Modality to Mapping Workstation
Using SR Dose Reports

- **National Registries**
 - Anonymize and submit Dose Reports to Registry
 - Compile Population Risk Estimations
 - Derive Dose Reference Levels (DRLs)
 - Provide Site-Site Comparisons

- **Individual Dose Record**
 - Collect Dose Reports over time

- **Clinical Trials**
 - Collect Dose together with Images
 - Demonstrate both improved detection & reduced dose
Legacy Dose Extractors

<table>
<thead>
<tr>
<th>Series</th>
<th>Type</th>
<th>Scan Range (mm)</th>
<th>CTD\text{vol} (mGy)</th>
<th>DLP (mGy cm)</th>
<th>Phantom cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Scout</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Helical</td>
<td>$15.750-1650.250$</td>
<td>5.10</td>
<td>373.00</td>
<td>Body 32</td>
</tr>
<tr>
<td>5</td>
<td>Helical</td>
<td>$188.000-1105.000$</td>
<td>5.10</td>
<td>182.72</td>
<td>Body 32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total Exam DLP: 555.72</td>
<td>1/1</td>
</tr>
</tbody>
</table>

Patient Name:
Accession Number:
Patient ID:
Exam Description: CT HALS/THORAX/ABDOMEN

Exam no: Discovery CT750 HD
Legacy Extractor

- What if you can’t get REM?
- Extractors create (partial) REM objects
 - Based on OCR of dose screens
 - Based on image header contents
 - Based on MPPS
- Likely incomplete but still useful
- Allows use of uniform infrastructure (RDSR)
- Current focus: CT, some XA
Example Extractors

- Open Source
 - “Dose Utility” - dclunie.com
 - by David Clunie (PixelMed)
 - “Radiance” - radiancedose.com
 - by Tessa Cook (Hospital of U of Pennsylvania)
 - “GROK” – dose-grok.sourceforge.net
 - by Graham Warden (Brigham and Women's Hospital)

- Also
 - ACR Triad Site Server (included in ACR participation)
 - by Mythreyi Chatfield (ACR)
 - ... and a growing number of commercial products
MITA XR-25

CT Dose Check

Dose Notification
Predicted DLP of 981 mGy-cm
Exceeds Threshold …
MITA CT Dose Check Initiative

- **Goals**
 - Enhance dose awareness (CTDI/DLP)
 - Help to avoid excessive radiation events
 - Provide data to sites for QA

- **MITA has published the standard (XR-25)**
 Manufacturers worked to ensure
 - Uniformity
 - Speed of implementation
 - Breadth of deployment

* http://www.nema.org/standards/xr25.cfm
Dose Notification

- Pop-up message
 - Notifies technologist that dose *for a current scan element* will exceed a trigger value
 - Tech may:
 - confirm and proceed, or
 - go back and adjust scan parameters
 - System records audit trail
 - Predicted dose, Notification value, Date/time, diagnostic reason, etc.

- Clinical sites set values that will trigger a notification
 - Can set DLP and/or CTDI_{vol} values for each scan element
 - e.g. head without contrast
 - Defined by the clinical site for their patient population
Dose Alert

- **Pop-up message**
 - Alerts technologist *cumulative* dose for current study will exceed a trigger value:
 - CTDI\text{vol} (summed at each patient location)
 - DLP (summed over the current study)
 - Tech may:
 - enter their name, (& a password if configured), confirm and proceed, or
 - go back and adjust scan parameters

- **Clinical sites set values that will trigger an alert**
 - Can set DLP and/or CTDI\text{vol} values
 - System must allow at least one global value
 - System tracks accumulated CTDI\text{vol} at each patient location & accumulated DLP
 - System checks predicted accumulated dose indices when protocols are saved & when scans are ready
Default Values

- The FDA has suggested an alert value for CTDIvol of 1000 mGy.
- AAPM suggested notification values
- Can be changed at local site
- Consider behavior modification vs alert fatigue

Table 1: Notification Values recommended by the AAPM Working Group on Standardization of CT Nomenclature and Protocols

<table>
<thead>
<tr>
<th>CT Scan Region</th>
<th>CTDIvol Notification Value (mGy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult Head</td>
<td>80</td>
</tr>
<tr>
<td>Adult Torso</td>
<td>50</td>
</tr>
<tr>
<td>Pediatric Head</td>
<td></td>
</tr>
<tr>
<td>≤2 years old</td>
<td>50</td>
</tr>
<tr>
<td>2 – 5 years old</td>
<td>60</td>
</tr>
<tr>
<td>Pediatric Torso</td>
<td></td>
</tr>
<tr>
<td>≤10 years old (10-cm phantom)<sup>a</sup></td>
<td>25</td>
</tr>
<tr>
<td>≤10 years old (32-cm phantom)<sup>b</sup></td>
<td>10</td>
</tr>
<tr>
<td>Brain Perfusion (examination that repeatedly scans the same anatomic level to measure the flow of contrast media through the anatomy)</td>
<td>000</td>
</tr>
<tr>
<td>Cardiac</td>
<td></td>
</tr>
<tr>
<td>Retrospectively gated (spiral)</td>
<td>150</td>
</tr>
<tr>
<td>Prospectively gated (sequential)</td>
<td>50</td>
</tr>
</tbody>
</table>

^a As of January 2011, GE, Hitachi and Toshiba scanners use the 16-cm-diameter CTDI phantom as the basis for evaluating dose indices (CTDIvol and DLP) displayed and reported for pediatric body examinations.

^b As of January 2011, Siemens and Philips scanners use the 32-cm-diameter CTDI phantom as the basis for evaluating dose indices (CTDIvol and DLP) displayed and reported for pediatric body examinations.
Audit Trails

- Pop-up Overridden? System must record:
 - Dose Notification
 - Predicted dose, Notification value, Date/time, Diagnostic reason
 - Dose Alert
 - Predicted dose, Alert value, Date/time, Diagnostic reason, Operator name

- RDSR has fields to record all these details
 - May choose to record even if not overridden

- Triggers vs DRLs
 - 75th percentile \rightarrow popups on 25\% of scans
 - See AAPM guidance
Dose Tracking in Products

- **IHE REM**
 - Testing: IHE Connectathon (2013: 32 vendors passed REM)
 - http://connectathon-results.ihe.net
 - Product: IHE Integration Statement (2013: 41 products)
 - http://product-registry.ihe.net

- **DICOM RDSR**
 - Product: DICOM Conformance Statement

- **NEMA XR-25**
 - Vendor commitment; most new products
Ask for it

- RFPs / Purchase Requirements
 - ... shall support IHE REM as the Acquisition Modality actor ...
 - Ask to see IHE Integration Statements & DICOM Conformance Statements

- Installation / Acceptance
 - Discuss activation / configuration

- Upgrades
 - Some models can be upgraded
Takeaway

Data Collection
- New/recent Modalities
 - IHE REM / DICOM RDSR to capture dose data
- Legacy strategies
 - Dose extractors to generate RDSR data

Analysis
- IHE REM – Dose Information Reporter for local analysis
- ACR Dose Registry to compare to benchmarks

Prevention
- CT Dose Check for configurable pre-scan alerts