Eye lens dose from CT brain perfusion CT exams

Di Zhang

Toshiba America Medical Systems Biomedical Physics David Geffen School of Medicine University of California, Los Angeles

Currently employee of Toshiba America Medical Systems

Background

CT brain perfusion

 Significant improvements in CT technology over the past decade

- Multi-detector CT (4 -> 320 rows)
- Improved temporal resolution (seconds -> ~0.3 sec per rotation)
- Led to increase in clinical utilization
 - Including brain perfusion CT

CT brain perfusion

 Evaluate cerebral perfusion defects for suspected stroke patients

- Nature, age, mechanism, and potential reversibility
- Within the critical therapeutic time window
- Important tool to evaluate brain tumors
 - Perfusion characteristics of brain neoplasm to determine malignant potential
 - Assess therapy response by monitoring changes of blood-brain barrier

CT brain perfusion scan flowchart

- Radiation dose
- Peak skin dose:
 - Erythema (skin reddening) and epilation (hair loss) complications
- Eye lens dose:
 - Cataractogenesis
- Can be caused by improper protocol or operation

- Started from medias
 Hospitals in Los Angeles,
 - Altanta, etc

Subscribe | CMIO | Cardiovascular Busin

HealthImaging.com

Images, information & knowledge across the enterprise

Home Top Stories V Magazine Newsletter Healthcare Technology Webcasts Portals White Papers

TOP STORIES

Update: Cedars-Sinai explains CT perfusion radiation overexposure

U.S. Department of Health & Human Services			📎 www.hhs.gov
EDA U.S. Food and Drug Administration	A-Z Index	Search	9
Home Food Drugs Medical Devices Vaccines, Blood & Biologics A	nimal & Veterinary Cosm	etics Radiation-Emitt	ing Products Tobacco Products)
News & Events	🔁 Share 🔛 Em	iail this Page 🖨 Print	t this page 🛛 🖃 Change Font Size
Home > News & Ev <mark>ents > Newsroom > Press Announcements</mark>			
FDA NEWS RELEASE			
For Immediate Release: Dec. 7, 2009			

Media Inquiries: Karen Riley, 301-796-4674, karen riley@fda.hhs.gov Consumer Inquiries: 888-INFO-FDA

FDA Makes Interim Recommendations to Address Concern of Excess Radiation Exposure during CT Perfusion Imaging

As part of an ongoing investigation into cases of excess radiation during CT perfusion imaging of the brain, the U.S. Food and Drug Administration today provided imaging facilities and practitioners with interim recommendations to help prevent additional problems.

The FDA issued an initial safety notification in October after learning of 206 patients who had been exposed to excess radiation at Cedars-Sinai Medical Center in Los Angeles over an 18-month period.

Ķ U.S. Department of Health & H	luman Services			🔊 www.hhs.gov
U.S. Food and Dr	ug Administration	A-Z Index	Search	
Home Food Drugs Medical Devi	ces Vaccines, Blood & Biologics Anim:	al & Veterinary Cosm	etics Radiation-Emitting Pr	oducts Tobacco Products
ledical Devices		👩 Share 🖂 Em	iail this Page 🛱 Print this p	Jage 田田 Change Font Size
o <mark>me > Medical Devices > Medical Dev</mark>	ice Safety > Alerts and Notices (Medical	Devices)		.2.
Medical Device Safety	Safety Investigatio	n of CT Brai	in Perfusion Sc	ans: Update
Alerts and Notices (Medical	12/8/2009			
Devices)	Date Issued: December 8, 20	009		
Information About Heparin	Audience: CT facilities, Emerg	ency Medicine Phy	sicians, Radiologists, Ne	urologists,
Luer Misconnections	Neurosurgeons, Radiologic Tech	nnológists, Medical	Physicists, Radiation Sa	afety Officers
Safety Communications	Medical Specialties: Emergen	cy Medicine, Radiol	logy	

💃 U.S. Department of Health & H	uman Services		🔊 www.hhs.go			
DA U.S. Food and Dru	g Administration	A-Z Index Search	90			
Home Food Drugs Medical Devic	es Vaccines, Blood & Biologics A	Animal & Veterinary Cosmetics Radiation-Emitting Produc	cts Tobacco Products			
adiation-Emitting Prod	UCTS adiation Safety > Radiation Dose Re	💽 Share 🔙 Email this Page 🔒 Print this page duction	🕀 🖂 Change Font Siz			
Radiation Safety	White Paper: Init	tiative to Reduce Unnecessary	Radiation			
Radiation Dose Reduction	Exposure from M	eurcar imaging	19779			
Initiative to Reduce	Function Contents		PDF Printer Version			
Exposure from Medical Imaging	Executive Summary					
	Types of Medical Imaging Procedures					
	Concerns about Pad	liation Evnosure				
	Unnecessary Radiati	ion Exposure				
	Eactors Contributing to Unnecessary Padiation Exposure					
	Issues Related to De	evice Use				
	 Issues Related to Cl 	linical Decision Making				
	 Initiative to Reduce Unnecessary Radiation Exposure from Medical Imaging 					
	Promote Safe Use of Medical Imaging Devices					
	 Support Informed Clinical Decision Making 					
	 Increase Patient Aw 	/areness				
	Conclusion					
	Executive Summary					

Like all medical procedures, computed tomography (CT), fluoroscopy, and nuclear medicine imaging exams present both benefits and risks. These types of imaging procedures have led to improvements in the diagnosis and treatment of numerous medical conditions. At the same time,

Regular Server | Logged in as Mr. Zhang, AAPM ID# 33111 | Secure? | Logout

The American Association of Physicists in Medicine

Public & General

We advance the science, education and professional practice of medical physics

My AAPM

AAPM

Public & Media

- Media Contact
- Public Position Statements
- Mammography
- Nuclear Medicine
- Radiation Therapy
- Diagnostic Medical Imaging
- Medical Physics in the News

International

Medical Physicist

Members

Current & Prospective

Philly, when?

2010!

December 17, 2009

The American Association of Physicists in Medicine (AAPM) is a scientific and professional society comprised of scientists (medical physicists) who establish radiation measurement procedures and perform them on radiation emitting devices, including computed tomography (CT) scanners. There have been a number of CT related issues in the news over the past months pertaining to radiation dose, however there have been several misleading statements made with respect to radiation hazards from CT scanning. The AAPM believes in an open discussion, but one that is based on facts. The goal of this statement is to present these facts.

Search

Home | Directory | Career Services |

Linked

FONT

Continuing Education | Contact

We should state from the outset that medical physicists are partnering with technologists, radiologists, regulators, manufacturers, administrators and others to strive for CT scans that are medically indicated; and when they are performed that the minimum amount of radiation is used to obtain the diagnostic information for which the CT scan was ordered.

CT brain perfusion overexposures

The Food and Drug Administration (FDA) issued an alert in regards to high dose levels used in head CT perfusion studies at a hospital in Southern California(1). Over 200 patients apparently received excess radiation during these time-lapse (repeated) CT studies of the head. Subsequently, similar incidents have been identified at two other hospitals in Southern California and potentially in other locations as well. Early investigations of these incidents revealed a misunderstanding of some of the automated dose selection features on the scanner, and this led to an estimated 8 fold increase in radiation to the patient. This was discovered when a number of the patients experienced some temporary hair loss (epilation) and skin reddening (erythema).

Go

The American Association of Physicists in Medicine

We advance the science, education and professional practice of medical physics

My AAPM

AAPM

Public & Media

- Media Contact
- Public Position Statements
- Mammography
- Nuclear Medicine
- Radiation Therapy
- Diagnostic Medical Imaging
- Medical Physics in the News

Summit Aims to Develop Guidelines for Safe and Effective CT Scans

Medical Physicists, Radiologists, Technologists and Equipment Manufacturers Gather In Atlanta, GA to Establish Freely Available Guidelines for Routine Procedures

FOR IMMEDIATE RELEASE

Contact: Jason Socrates Bardi, American Institute of Physics 301-209-3091 office, 858-775-4080 cell, jbardi@aip.org

COLLEGE PARK, MD (April 28, 2010) -- A national "CT Dose Summit" in Atlanta, GA this week will bring together some of the world's leading experts on medical imaging to lay the foundation for assembling optimized guidelines for performing CT scans -- a common medical imaging procedure that uses X-rays to show cross-sectional images of the body.

Home | Directory | Career Services |

Linked

FONT

1155

Continuing Education | Contact

COMPUTED TOMOGRAPHY DOSE MANAGEMENT

CRCPD Pub. E-10-4

The Joint Commission Sentinel Event Alert

The American Association of Physicists in Medicine

We advance the science, education and professional practice of medical p

CT Scan Protocols

Purpose	Questions	Role of the QMP	CT Dose-Check	Protocols	Lexicon	Education Slides	

Available Protocols

Adult Protocols

- Routine Adult Chest CT (added 11/20/2012) [Give Feedback]
- Routine Adult Abdomen/Pelvis CT (added 10/17/2012) [Give Feedback]
- Routine Adult Head CT (added 06/01/2012) [Give Feedback]
- Routine Adult Brain Perfusion (updated 05/22/2012) [Give Feedback]

Eye lens dose management is important

- Accurately estimate eye lens dose from brain perfusion exams
- How well easily implementable CT metrics can predict eye lens dose
- Explore eye lens dose reduction strategies
- Optimize scanning protocols
- Ensure the Enforcement of the optimized protocols

Eye lens dose management is important

- Accurately estimate eye lens dose from brain perfusion exams
- How well easily implementable CT metrics can predict eye lens dose
- Explore eye lens dose reduction strategies
- Optimize scanning protocols
- Ensure the Enforcement of the optimized protocols

Outline

 Accurately estimate eye lens dose from brain perfusion exams

- Evaluate the prediction of skin and eye lens dose from dosimetry measurements
- Explore dose reduction strategies

- Monte Carlo simulations
 - CT source model
 - Patient model

CT source model

- Spectra
 - Function of beam energy
- Geometry
 - Fan angle, beam profile
- Filtration
 - Bowtie filter (typically proprietary)
 - Other added filtration (also proprietary)
- Data comes from:
 - Manufacturer
 - Equivalent Source Method (Turner Med Phys 2009)
 - Measured values (HVL, bowtie profile)
 - Calculations to get "equivalent" spectra and bowtie

- CT source models for 64 slice scanners from all four manufactures
 - Toshiba Aquilion 64

- CT source models for 64 slices scanners from four major manufactures
 - Toshiba Aquilion 64
 - Siemens Sensation 64

- CT source models for 64 slice scanners from all four manufactures
 - Toshiba Aquilion 64
 - Siemens Sensation 64
 - GE VCT

- CT source models for 64 slices scanners from all four manufactures
 - Toshiba Aquilion 64
 - Siemens Sensation 64
 - GE VCT 64
 - Phillips Brilliance 64

Patient model

- Voxelized Models
 - Based on actual patient images
 - Identify radiosensitive organs usually manually
 - Location, size, composition, and density defined for each organ
- Different age, gender, and sizes
- RPI, UFL, Duke, GSF, etc.

Patient model

GSF models (Petoussi-Henss N, Zankl M et al, 2002)
 All radiosensitive organs identified manually (ugh!)
 4 adults (Irene, Donna, Golem, and Frank)

Simulation experiments

- To estimate eye lens dose from brain perfusion scan:
 - All 4 scanners, all 4 patients
 - at all 4 tube voltage settings (4 x 4 x 4 simulations)
 - Using the widest collimation
 - Cover the eye lenses
 - No table movement

Results

Eye lens dose (mGy/100mAs)

Eye lens dose under each kV on all four scanners for all four patients

Di Zhang, et al, Med Phys, 40 (9), 2013

 Estimate scanner and protocol specific eye lens dose for CT brain perfusion exams

For example, AAPM brain perfusion protocols

AAPM protocols

The American Association of Physicists in Medicine

We advance the science, education and professional practice of medical p

CT Scan Protocols

Purpose	Questions	Role of the QMP	CT Dose-Check	Protocols	Lexicon	Education Slides	

Available Protocols

Adult Protocols

- Routine Adult Chest CT (added 11/20/2012) [Give Feedback]
- Routine Adult Abdomen/Pelvis CT (added 10/17/2012) [Give Feedback]
- Routine Adult Head CT (added 06/01/2012) [Give Feedback]
- Routine Adult Brain Perfusion (updated 05/22/2012) [Give Feedback]

AAPM protocols

Scanner/Mode	kVp	bowtie	Nominal collimation (total) in mm	mAs/rotation	No. of rotations	total mAs
Siemens Sensation 64	80	general	24 x 1.2 (28)	270	40	10800
GE VCT axial mode	80	head	64 x 0.625 (40)	150	22	3300
GE VCT cine mode	80	head	64 x 0.625 (40)	150	45	6750
Philips Brilliance 64 Non-Jog mode	80	general	32 x 1.25(40)	125	30	3750

Scanner/	Siemens	GE VCT	GE VCT	Philips
mode	Sensation	axial mode	cine mode	Brilliance
	64			64
Eye lens	256	137	279	81
dose (mGy)				

Calculate dose for other protocols

- Can be used by other institution as a tool to calculate eye lens dose for their scanning protocols
- Protocol design
- Retrospective dose estimates

 Accurately estimate peak skin and eye lens dose from neuro-perfusion examinations

- Evaluate the prediction of eye lens dose from easily implementable CT metrics
- Explore dose reduction strategies

CT dose metrics

Conventional Computed Tomography Dose Index (CTDI_{vol})

Most widely used and reported on scanners

Total mAs 9229	Total DLP 3244 mGycm						
	Scan	ΚV	mAs / ref.	CTDIvol mGy	DLP mGycm	TI s	cSL mm
Patient Position H	I-SP						
Head/NETopo	1	120	35 mA			4.2	0.6
HdSeq XC wo	2	120	214 / 240	37.08	640	2.0	1.2
Perfusion w	7	80	95	211.86	814	1.0	1.2
PreMonitoring	8	120	20	2.44	2	0.5	10.0
Contrast Monitoring	0	100	20	10.50	20	05	10.0
OT Droin/blok	9 47	120	20	19.00	20 4760	0.0	10.0
CTA Brain/NCK		120	308 / 335	43.39	1/68	0.5	0.6

CT Dose Distribution along Z

D(z) = dose profile along z-axis from a single axial scan

D(z)

Ζ

Measure w/film or TLDs

CT Dose Distribution Along Z

What about Multiple Scans?

D(z)

Ζ

CT Dose Distributions

CT dose metrics

CTDI_{vol}

- Assume continuous scans with table incrementations
- Overestimate dose to a point

Bauhs, J.A., Vrieze, T.J., Primak, A.N., Bruesewitz, M.R. & McCollough, C.H. CT dosimetry: comparison of measurement techniques and devices. *Radiographics* **28**, 245-253 (2008).

CTDI_{vol} normalized by true eye lens dose

Ratio of CTDI_{vol} and simulated eye lens dose under each kVp on all four scanners for all four patients

Di Zhang, et al, Med Phys, 40 (9), 2013

CT dose metrics

AAPM TaskGroup 111 (TG111) peak dose metric

- Use a small chamber for point dose measurement
- May provide better estimate to eye lens dose from brain perfusion scans

TG111 measurements normalized by true eye lens dose

Ratio of AAPM report No. 111 measurement and simulated eye lens dose under each kVp on all four scanners for all four patients

CT dose metrics

- ImPACT CT organ dose estimation tool (including eye lens)
- Modern scanner are approximated
- MIRD mathematical patient model

ImPACT estimate normalized by true eye lens dose

Di Zhang, et al, Med Phys, 40 (9), 2013

Summary of dose metrics

- CTDI_{vol} overestimates eye lens dose by 30%-100%
- ImPACT overestimates by up to 80%
- TG111 measurement is a closer estimate

Outline

 Accurately estimate peak skin and eye lens dose from neuro-perfusion examinations

- Evaluate the prediction of skin and eye lens dose from dosimetry measurements
- Explore dose reduction strategies

Explore dose reduction strategies

- Lowering kVp or mAs, IR (universal methods)
- Bismuth shielding, organ based tube current modulation
 - J Wang, et al, Radiology, 262(1):191-8, 2012.
 - Bismuth shielding = simply reducing tube current

Explore dose reduction strategies

- Simply based on geometry
 - Scan location
 - Gantry tilt
- The scatter component?

Explore dose reduction strategies

 Move scan location away scan location every 0.5 cm.

Dose reduction strategies

Moving scan location away (half beam width 1.6 cm)

Eye lens dose as a function of scan location at 120kVp, 4500 total mAs for Siemens Sensation 64 scanner

Di Zhang, et al, AJR, 198:412-417, 2012

Dose reduction strategies

Tilting gantry angle

eye lens dose as a fucntion of tilted gantry angle at 120kVp, 4500 total mAs on Siemens Sensation 64 scanner

Di Zhang, et al, AJR, 198:412-417, 2012

Conclusions

Conclusion (1)

 Accurately estimate eye lens dose from CT brain perfusion exam

- Protocol design
- Dose estimate

Conclusion (2)

- Understand the performance of common tools in terms of estimating eye lens dose
 - CTDI and ImPACT overestimates doseTG111 is more accurate, but not currently available on console
 - Still not dose to patient

Conclusion (3)

Strategies to reduce eye lens dose

- Moving the scan location away: (10%~15%)
- Tilting the gantry angle: (10%~15%)

Thank you!

