INTRODUCING Plan Quality Metrics

A Method to Customize and Automate the Measurement of Plan Quality

BEN NELMS, PH.D. (CANIS LUPUS LLC)

DISCLAIMERS

Sources of Funding

- None to report, i.e. the research and work discussed here are unfunded.
- Plan Challenges are voluntary and free to participants.
- Plan Challenge design, evaluation, and analysis is a voluntary service provided by me and the team of dosimetrists from ROR.
- STATEMENTS OF CONFLICT OF INTEREST
 - I am a paid consultant to Sun Nuclear Corporation and the inventor of their products: EPIDOSE, MOTIONSIM, and 3DVH.
 - My company (Canis Lupus LLC) owns and develops the medical device software solution QUALITY REPORTS [EMR][®].

ACKNOWLEDGEMENTS

BELOW ARE SOME OF MY COLLEAGUES WHO WERE INSTRUMENTAL IN THIS WORK:

- Greg Robinson, MS, CMD, RT(T)
- Kyle Velasco, CMD, RT(T)
- Adam Moore, CMD, RT(T)
- Steve Boyd, CMD, RT(R)(T)

OTHER CONTRIBUTORS INCLUDE:

- Vladimir Feygelman, Ph.D.
- "Project Icarus" research team (consists of a small, international group of dosimetrists and physicists from the USA, CAN, AUS, and the UK)

OUTLINE

- INTRODUCTION: WHAT IS PLAN QUALITY?
- PLAN QUALITY METRICS (PQM)
 - History: The International "Plan Challenges"
 - Description & Methods
 - Example Plan Challenge Results / Analysis
- Applications (Per Patient)
 - Per-Patient Workflow
 - Commissioning & Validation
 - Accreditation & Competency Testing
- OTHER APPLICATIONS (QUALITY MANAGEMENT SYSTEMS)
 - Commissioning (TPS and Delivery)
 - Benchmarking & Comparative Effectiveness
 - Clinical Trials

WHAT IS PLAN QUALITY?

- PLAN QUALITY ≠ ANY PARTICULAR MODALITY, BRAND, OR ACRONYM
 - "IMRT" does not guarantee high quality plans
 - "VMAT" does not guarantee high quality plans
 - "Particle/Proton Therapy" does not guarantee high quality plans
 - [Insert New Fancy Product Name Here] does not guarantee high quality plans
- FINDINGS FROM THE PLAN CHALLENGES
 - Plenty of poor quality plans using latest modalities and products
 - Some of the very high quality plans are some of the least complex and using older equipment

WHAT IS PLAN QUALITY?

Plan Quality ≠ Planner Experience or Certification

- Years Experience does not guarantee high quality plans
- CMD does not guarantee high quality plans (nor do: PhD, DABR, MD, etc.)
- Currently, there is no objective testing of practical skills (i.e. contouring or planning) included in the CMD exams.
- FINDINGS FROM THE PLAN CHALLENGES
 - Plenty of poor quality plans from very experienced and certified planners.
 - Some of the highest quality plans have come from brand new (< 1 year) planners and dosimetry students.</p>

WHAT IS PLAN QUALITY?

DEFINITION OF PLAN QUALITY

plan qual·i·ty ['plan 'kwä-lə-tē]

1. The objective measure of how well a 3-D dose distribution, when coupled with 3-D anatomy, meets clearly defined goals and priorities.

HISTORY: THE "PLAN CHALLENGE"

THE MISSION OF THE PLAN CHALLENGE INITIATIVE

To perform controlled, scientifically-valid studies of the variation in Plan Quality across treatment planners and modalities, with the aims to: glean best practices, educate our peers, improve quality in radiation therapy, and inspire continual improvement.

Int J Radiat Oncol Biol Phys. 2012 Jan 1;82(1):368-78.

CLINICAL INVESTIGATION

.

VARIATIONS IN THE CONTOURING OF ORGANS AT RISK: TEST CASE FROM A PATIENT WITH OROPHARYNGEAL CANCER

BENJAMIN E. NELMS, PH.D.,* WOLFGANG A. TOMÉ, PH.D.,[†] GREG ROBINSON, CMD,[‡]

Variation in external beam treatment plan quality: An inter-institutional study of planners and planning systems

^{onc.org} Benjamin E. Nelms PhD^{a,b,*}, Greg Robinson CMD^c, Jay Markham CMD^c, Kyle Velasco CMD^c, Steve Boyd CMD^c, Sharath Narayan CMD^c, James Wheeler MD, PhD^d, Mark L. Sobczak MD^e

HISTORY: THE "PLAN CHALLENGES"

HISTORY: THE "PLAN CHALLENGES"

PLAN CHALLENGE ACCRUED DATABASE

- Over 10 different test datasets
 - CT imageset with required contours (provided)
 - Plan Quality Algorithms (i.e. Objectives & Scoring Methods)
- Over 1800 submitted plans
 - DICOM RT Plan & Dose pairs
- Over 30,000 metrics
 - Total Score (PQM) for each submitted dataset
 - Sub-metric results and sub-scores per metric
 - Performance distributions over population of planners

METHOD: "PLAN QUALITY ALGORITHM"

DEFINE PLAN QUALITY ALGORITHM

- IDENTIFY CRITICAL SUB-METRICS. Dose, DVH, or formulaic sub-metrics selected from a library of choices (currently 17 options)
- DEFINE EACH SUB-METRIC'S PARAMETERS. ROI, dose and/or volume levels, etc. Can also set "ROI Synonyms" to allow for some variability in ROI naming.
- DEFINE EACH SUB-METRIC'S SCORE FUNCTION. Specify priority (i.e. weight) along with "failure" level and a "goal" (e.g. ideal) level, and scoring in between.

SCORE PLAN

- IMPORT DICOM DATA. RT Plan, Structures, Dose, and CT images.
- LOAD PLAN QUALITY ALGORITHM. Generates score automatically along with full spreadsheet and per-metric "drill down" analysis.

LIBRARY OF PLAN QUALITY SUB-METRICS

EXAMPLES: DEFINING SUB-METRICS

EXAMPLES: DEFINING SUB-METRICS

Metric Type:	Select	ConformalityIndex			•			
Parameters:	ROI Name:	PTV	-	Dose (Gy)	48.000 🌲			
Metric ID:	[PTV] Confo	rmality Index [48.0Gy]						
f(x) Conformality		[Volume (cc) covered b [Total volume (cc) o					e Function Flot Conformality Index (1.2,5)	[48.0Gy]
Quick Rx	ick Rx Goal as Goal:	efine Score Function for: [PTV] Con comparator sign followed by numb Help Keys: > 2	er, e.g. "≥ 95" or	E G	0.2	04 06	0.8 1 1.2	(16.0)
Colored to	re Function	e, 2) threshold fail value, and 3) wei	abt (max points)		0.2		ality Index [48.0Gy]>	177 170
Select	Goal: 1		Weight (Max		_			
Select 🕨	existing Score	: Function file and edit if desired. Or 19915 ARM2\[PTV] Conformality In			ıts]	New Edit		
Metric Type Met	tric ID		Weight	Score Function	Graphic			
Conformality Index	/] Conforma	lity Index [48.0Gy]	5.00	5			≤ 1.2 <mark><</mark>	1.5 ≥ 1 .5

EXAMPLE: RTOG 0915

RTOG 0915 (ARM 2) RENDERED AS PQ ALGORITHM

- 27 sub-metrics, each weighted equally (1.00)
- 26 sub-metrics have "ideal" levels along with "acceptable" levels; one is pass/fail
- 15 DVH-based
- 9 Simple (i.e. min, max mean, etc.)
- 3 Advanced or Formulaic (i.e. conformality indices, global max location, etc.)

EXAMPLE: 2013 PC

2013 PLAN CHALLENGE PQ ALGORITHM

- 19 sub-metrics, variably weighted for a total score of 150.00
- All 19 sub-metrics have "ideal" levels along with "acceptable" levels
- 12 DVH-based
- 1 Simple (i.e. min, max mean, etc.)
- 6 Advanced or Formulaic (i.e. conformation numbers, conformality indices, homogeneity indices, global max location, etc.)

TPS [2] [PTV_5040] (Ve7.389(1/6%) ≤ 1 (0 (2×36) 959.57.68 24.93 24.93 TPS [2] [PTV_5040] (D52.925(P(%) ≤ 0 (< 10) 0.0232 9.98 1000 [PTV_5040] D[0.03cc] (Gy) ≤ 52 (< 55) 52.9810 6.73 1000 [PTV_5040] Conformation Number [47.88G(y) ≥ 1 [> 0.5] 0.5803 1.28 5.00 [CTV] V[50.4Gy] (%) ≥ 99 [> 94] 99.3392 25.00 25.00 [CTV] V[50.4Gy] (%) ≥ 99 [> 94] 99.3392 25.00 25.00 [CTV] V[50.4Gy] (%) ≥ 99 [> 94] 99.3392 25.00 25.00 [CTV] V[50.4Gy] (%) ≥ 35 (< 46) 41.3545 4.65 8.00 [CTV] V[50.4Gy] (%) ≥ 97 [> 941 99.3392 25.00 25.00 [OPTIC CHLASH] [D[0.03cc] (Gy) ≤ 1 [< 10 4.145 3.90 5.00 [CTV] V[50.4Gy] (%) ≤ 1 [< 25] 5.7387 5.95 7.00 ⊆1 [<s]< td=""> 3.9097 4.03 5.00 3.00 [RT ORBIT] Mean dose (Gy) ≤ 0 [< 10] 2.5415 2.15 3.00 [RT OPTIC NERVE] D[0.03cc] (Gy) ≤ 0.5 [< 3</s]<>							
Image: Constraint of the state of		Total [17 Metrics]			132.51	150.00	88.3
TPS [2] [PTV_5040] Yes2s25y (%) ≤ 0 [< 10]	TPS [4]	Global Max Location (ROI)	CTV [CTV; PTV_5040]	PTV_5040	2.00	3.00	66.7
TPS [2] IPTV_5040 [V[2:325y] (%) ≤ 0 [< 10]	DICO	M [BRAINSTEM] D[0.03cc] (Gy)	≤ 50.4	49.0009	0.00	0.00	100.0
Image: Non-State State Image: Non-State Image: Non-		[CORD] D[0.03cc] (Gy)	≤ 48	0.8092	0.00	0.00	100.0
TPS [2] [PTV_5040] (V[523925y] (%) ≤ 0 [< 10]	TPS [3]						52.0
TPS [2] [PV_5040] (19.383) (18) 2 10 (1>86) 99.87.00 24.93 2.330 TPS [2] [PV_5040] D(0.30c] (9) \$ 0 [< 10]							100.0
Image: Constraint of the set of		IRT ORBITI Mean dose (Gv)					71.8
TPS [2] [P1V_5040] V[52:92Gy] (%) 2 10 (< 10)		EMR GET SET GO					80.6
Image: Constraint of the state of	QUALITY	KEPORTS [EMIK]					85.
Image: Direct of the start of the							100.0
TPS [2] [PTV_5040] (V[52.9259] (%) ≤ 10 (× 10) 95.97.00 52.95.00 [PTV_5040] V[52.9259] (%) ≤ 0 (< 10)	¥						78.
Image: Text (a) Image: Text (b) Image: Te		,					58.
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	IPS [2]						25.
Image: Interpretation	TDE IOI						67. 25.
[FTV_3040] V[47.8639] (%) 2 100 [2 36] 35.5766 24.55 25.00	DICOI	VI					99.8
							99.
TPS [1] [PTV_5040] V[50.4Gy] (%) ≥ 95 [> 90] 94.5513 29.33 30.00	TPS [1]	,					97.
			• · ·				Performar

DOM SCORE ÷ -. .

BUILDING A PERFORMANCE DISTRIBUTION

Some Plan Challenge Conclusions

 Despite controlled inputs (CT and structures) and well-defined objectives (Plan Quality Algorithm), THERE IS VERY HIGH VARIABILITY IN PLAN QUALITY.

Some Plan Challenge Conclusions

• VMAT IS NOT BETTER THAN IMRT (BUT IT IS LESS VARIABLE)

Some Plan Challenge Conclusions

No correlation with plan complexity.

PLAN QUALITY IS AN ART, DETERMINED BY SKILL LEVEL.

Some Plan Challenge Conclusions

 THERE IS A DEPENDENCE ON TPS (especially if considering the max potential of Plan Quality).

PQM APPLICATIONS

- CLEARLY THE PLAN QUALITY ALGORITHM AND THE "PQM" RESULTS ARE A POWERFUL WAY TO DEFINE AND MEASURE PLAN QUALITY.
- WHAT ARE APPLICATIONS BEYOND GENERAL ASSESSMENTS OF STANDARD PLANS?
 - Per-Patient Workflow
 - System Commissioning and Validation
 - Accreditation, Competency Testing, & Training

PQM APPLICATIONS (PER PATIENT)

Plan Ii	NSTRU	JCTIC	NS a	& PI	HYSIC	CIAN	's In	ITENT	,
Plan Instructions & Physician's Intent	3D Imaging & Simulation	ANATOMY CONTOURING	Treatment Planning	Plan Review	Peer Review	Physics Dose QA	Patient Training	TREATMENT FRACTIONS	
	FD								
MUST B	E TRACE				VENT	JALLY	ACHIE	VED	
FracOAF	NS (BUT set pres stionatio dose c uired st	criptio on objectiv	n ves	·	ntoure	d			
Physical PhysicaPhysi	sician's	approv	val						

PLAN INSTRUCTIONS & PHYSICIAN'S INTENT

				n Objecti						
Planning Target Volu	mes Goal Dose	Max Dose		Dose	#FX	Dosel <u>fx</u> (Gy) Priority			
PTV60	60 Gy.	64.2Gv		: 95%vol 100%vol	30	200	1			
				100%vol				-		
PTV54	54 Gy			≥ 100%vol	30	180	1			
Fractionation: A. Standard: 60Gy/0	5 weeks: 2Gy / frac	tion 5 fraction	s per week	Prescripti	ion: 50.4	Gy to be	delivered	in 28 fractions at 1.8 G	per fraction to be followed by a boost of an additional 10 Gy delivered in 5 fract	
B. Other				2 Gy per	fraction	for total	dose of 60.	4 Gy in 33 fractions.	Dose Constraints:	uns a
Chemo: yes 🗖 no 🗖 🕻	hemo MD:	1	Freatment							
		Objective		Spinal co	rd- mavi	mum of	45 Gu			
Organ at Risk	Mann	lose (Gy)	Max D	-911101 001			10 01			
	meanic			Total lun					and the second	
Spinal Cord + 5mm	Lhemitte's <26	Gy	Myelop V30 <4						minimized. Ideally it will be less than 20 %. With concurrent chemotherap	ly the
			V40 <1	pneumon	nitis risk i	s as follo	ws (NCCN	vol 6 #3 March 2008 p 2	246.	
Brainstem + 3mm	Nausea <36		Neurop or 2.7							
	100300 100		0.900	Paramete	21			Range	Pneumonitis risk	
Partial Brain			Limit v	V20				≤ 20%	9%	
Chiasm	<50		54 Qx	V20				21-25%	18%	
Pituitary / Hypothalam	us 45Gy			V20				26-30%	51%	
R Optic nerve			60Gy1	V20				> 31%	85%	
L optic nerve			60Gy 1	¥20				> 3170	679	
Retina	45Gy		_	and the second						
Cochlea Middle Ear	Hearing Loss <	45	Nause			e ± induc	tion chemi	otherapy (but not concu		
Reparetid	<26			Paramete	r			Range	Pneumonitis risk	
parotid	<26		-	V20				< 20%	0-2%	
R SMG	<39			V20				20-31%	7-15%	
_ SMG	<39			V20				> 32%	13-48%	
Dral cavity	<32		-						15 40/4	
			V35 <	Information on the same	tion of		data a film	(V5) should be ≤ 42%.		
Larynx	Aspiration < 41 PEG Depender		V45 < V55 <							
	PEG Depender	ice s o i	V65 <	Ideally vo	lume of	lung rece	living 30 Gy	(V30) should be ≤ 8%.		
	10-15cc Gland -									
Thyroid	20cc Gland – m			Heart dos	ie: 60 Gy	to < 1/3	; 45 Gy to	< 2/3; 40 Gy should not	t cover entire heart. (RTOG 0623)	
	25cc Gland – m Assiration <54	ean <40								
SPC/MPC/IPC	Stricture <54			Esophagu	s: mean	dose to	the esopha	gus should be below 34	Gy. Up to 10 cm of esophagus can receive up to 60 Gy. (RTOG 0617).	
-	PEG Depender	ice <51							, , ,	
			V40 <6	Brachial P	lavus e f	in Gu				
IPC	1		V50 <4		10,003 5 6	~ ~y.				_
			V70<	5.5%	_					-
Mandible	1		V60 <							
Brachial Plexus	-		V50 <	62% o <0.03cc						
brachial Plexus Notes:	1		pbGyt	0 50.0300		_				

PLAN INSTRUCTIONS & PHYSICIAN'S INTENT

 PLAN QUALITY ALGORITHM REPORT = PHYSICIAN'S INTENT & OBJECTIVES

- Target and critical OAR goals are much more clearly documented in the Plan Quality Algorithm reports
- Standardized
- Accessible
- Same data is used to generate the results
 guaranteed traceability

AUDIT CONTOURS & PREDICT ACHIEVABILITY

during planning) to ensure all required contours have been defined.

PRE-PLAN PREDICTION OF ACHIEVABILITY

- "Icarus" feature predicts achievability of dose objectives taking into account the unique patient anatomy
- Allows for: 1) setting of realistic expectations and/or 2) adjustment of dose objectives that cannot be met
- Discussed further in the "Research" section of this presentation

INTERACTIVE, EFFICIENT PLAN REVIEW

- Target and OAR objectives assessed immediately and efficiently
- Identifies failing metrics or areas for improvement
- Feedback into optimization process
- Guarantees that plan objectives are not a "moving target"; ideal and acceptable levels are clear
- Mitigates risk of omission

INTERACTIVE, EFFICIENT PLAN REVIEW

Plan Quality Metric Component	Objective(s)	Result	Score	Max Score	Performance		A	
[PTV_68] V[68.0Gy] (%)	≥ 95 [> 92.99]	97.2777	30.00	30.00	100.0%	FIRST	ΆΤΤ	EMPT
[PTV_68] D[0.03cc] (Gy)	≤ 71.4 [< 74.80]	75.0276	7.13	10.00	71.3%			
[PTV_68] Volume of Regret [68.0Gy]	(cc) ≤ 10 [< 40.00]	58.3935	0.00	10.00	0.0%			
[PTV_68] Conformation Number [64	.6Gy] ≥ 1 [> 0.599]	0.6266	2.08	5.00	41.5%			
[PROSTATE_BED] V[68.0Gy] (%)	≥ 99 [> 96.99]	100.0000	10.00	10.00	100.0%			
[PTV_56] V[56.0Gy] (%)	≥ 95 [> 92.99]	99.0450	30.00	30.00	100.0%			
[PTV56 - PTV68] V[58.8Gy] (%)	≤ 5 [< 25.00]	65.2693	0.00	10.00	0.0%			
Global Max Location (ROI)	PROSTATE_BED [PROSTATE_BED; PTV_6	B] PROSTATE_BED	5.00	5.00	100.0%			D
[RECTUM] V[65.0Gy] (%)	≤ 5 [< 25.00]	11.3431	9.37	10.00	93.7%	- FI	INAL	PLAN
[RECTUM] V[68.0Gy] (cc)	≤ 0 [< 5.001]	3.5390	6.48	10.00	64.8%			
[RECTUM] V[40.0Gy] (%)	≤ 20 [< 45]	58.5779	0.00	10.00	0.0%	Score	Max Score	Performance
[RECTUM] Serial Slice Evaluation [34	.0Gy] PASS [PASS]	Fail	-10.00	0.00	0.0%	30.00	30.00	100.0
[POST_RECTUM] V[34.0Gy] (%)	≤ 30	15.0310	0.00	0.00	100.0%	9.50	10.00	95.0
[BLADDER] V[65.0Gy] (%)	≤ 15 [< 30.00]	18.4116	5.67	7.00	81.0%	8.02	10.00	80.2
[BLADDER] V[40.0Gy] (%)	≤ 40 [< 55.00]	57.1114	0.00	3.00	0.0%			
Total [15 Metrics]			95.73	150.00	63.8%	4.01	5.00	80.19
1	PROSTATE_BEDJ V[68.0Gy] (%)	s aa (> ae'aal			100.0000	10.00	10.00	100.0
I	PTV_56] V[56.0Gy] (%)	≥ 95 [> 92.99]			98.4572	30.00	30.00	100.0
p	PTV56 - PTV68] V[58.8Gy] (%)	≤ 5 [< 25.00]			9.9572	8.77	10.00	87.7
G	Global Max Location (ROI)	PROSTATE_BED [PR	OSTATE_BEE	D; PTV_68]	PTV_68	3.00	5.00	60.0
0	RECTUM] V[65.0Gy] (%)	≤ 5 [< 25.00]			7.5491	9.75	10.00	97.5
D	RECTUM] V[68.0Gy] (cc)	≤ 0 [< 5.001]			1.5686	8.44	10.00	84.4
D	RECTUM] V[40.0Gy] (%)	≤ 20 [< 45]			38.2530	4.86	10.00	48.6
D	RECTUM] Serial Slice Evaluation [34.0Gy]	PASS [PASS]			Pass	0.00	0.00	100.0
D	POST_RECTUM] V[34.0Gy] (%)	≤ 30			3.5210	0.00	0.00	100.0
D	BLADDER] V[65.0Gy] (%)	≤ 15 [< 30.00]			19.7527	5.14	7.00	73.4
D	BLADDER] V[40.0Gy] (%)	≤ 40 [< 55.00]			46.1984	2.70	3.00	90.1
1	otal [15 Metrics]					134.18	150.00	89.5

Peer Review & Chart Rounds									
PLAN INSTRUCTIONS & 3D IMAGING ANATOMY TREATMENT PLAN PHYSICIAN'S INTENT & SIMILIATION CONTOLIENING PLANNING BEVIEW	PEER PHYSICS PATIENT TREATMENT REVIEW DOSE 0.4 TRAINING FRACTIONS								
 PHYSICIAN'S INTENT & SIMULATION CONTOURING PLANNING REVIEW PEER REVIEW & CHART ROUNDS Much more efficient because all the critical objectives and results are organized and scored Clinical team is trained and vested in their Plan Quality Algorithms, so their peer reviews are standardized and effective 	REVIEW DOSE QA TRAINING FRACTIONS Histogram of PQM Score Histogram of PQM Score N126 Mirc 58.18 Marc 142.47 Median: 119.69 Marc 117.10 Std Dev: 16.42 N 26 Mirc 58.18 Marc 142.47 Median: 119.69 Marc 117.10 Std Dev: 16.42 Image: Control of the state of the stat								
 Compare each plan's performance vs. population of similar plans 	2 5 50 50 50 50 50 50 50 50 50								

EFFICIENT & RELEVANT PER-PATIENT DOSE QA

- PER-PATIENT, PRE-TREATMENT DOSE QA HAS EVOLVED TO USE CLINICALLY-RELEVANT METRICS
 - Plan Quality Algorithm can create PQM scoresheets that are much more efficient than per-metric analyses
 - Captures clinical impact as defined by the PQM metrics and priorities
 - PQM_{Plan} ← → PQM_{DoseQA}:
 - Efficient
 - Comprehensive

EFFICIENT & RELEVANT PER-PATIENT DOSE QA

Results from Dose QA that estimates impact of TPS or delivery errors on patient dose

Plan Quality Metric Component	Objective(s)	Result	Score	Max Score	PLAN	Dose QA
[PTV_5040] V[50.4Gy] (%)	≥ 95 [> 90]	95.1586	30.00	30.00	100.0%	
[PTV_5040] V[47.88Gy] (%)	≥ 100 [> 98]	99.8897	24.67	25.00	98.7%	
[PTV_5040] V[52.92Gy] (%)	≤ 0 [< 10]	0.0000	10.00	10.00	100.0%	
[PTV_5040] D[0.03cc] (Gy)	≤ 52 [< 55]	52.8440	7.19	10.00	71.9%	
[PTV_5040] Conformation Number [47.88Gy]	≥ 1 [> 0.5]	0.6924	3.08	5.00	61.6%	
[CTV] V[50.4Gy] (%)	≥ 99 [> 94]	98.5941	24.39	25.00	97.6%	<u> </u>
[OPTIC CHIASM] D[0.03cc] (Gy)	≤ 35 [< 46]	36.9924	7.20	8.00	90.0%	
[LT ORBIT] Mean dose (Gy)	≤ 1 [< 10]	1.7026	4.77	5.00	95.3%	
[LT OPTIC NERVE] D[0.03cc] (Gy)	≤ 27 [< 45]	21.5059	8.00	8.00	100.0%	
[LT COCHLEA] D[0.03cc] (Gy)	≤ 1 [< 25]	5.4529	6.01	7.00	85.9%	
[LT LENS] D[0.03cc] (Gy)	≤ 1 [< 5]	1.3503	4.88	5.00	97.7%	
[RT ORBIT] Mean dose (Gy)	≤ 0 [< 10]	0.9792	2.67	3.00	89.1%	
[RT OPTIC NERVE] D[0.03cc] (Gy)	≤ 10 [< 20]	13.9761	1.72	3.00	57.4%	
[RT LENS] D[0.03cc] (Gy)	≤ 0.5 [< 3]	0.8444	2.83	3.00	94.3%	
[CORD] D[0.03cc] (Gy)	≤ 48	5.6817	0.00	0.00	100.0%	
[BRAINSTEM] D[0.03cc] (Gy)	≤ 50.4	47.3644	0.00	0.00	100.0%	
Global Max Location (ROI)	CTV [CTV; PTV_5040]	PTV_5040	2.00	3.00	66.7%	
Total [17 Metrics]			139.41	150.00	92.9%	

PER-FRACTION DOSE QA & ADAPTIVE RT

PER-FRACTION

- Per-fraction needs to be as automated as possible to avoid being a high-inspection, resource drain
- Run PQM results and set tolerances on score degradation levels, creating "red flag" events
- ADAPTIVE RADIATION THERAPY
 - Cumulative dose accrued over all fractions analyzed with Plan Quality and PQM_{Achieved} compared directly to PQM_{Planned}

Imperative in a "Pay-for-Performance" future

POTENTIAL: PROTOCOLS & CLINICAL TRIALS

EASY AUDIT OF SUBMITTED PLANS (E.G. RTOG)

- Removes the high resource cost of generating metric results vs. goals
- Removes the variability of methods

RETROSPECTIVE ANALYSIS OF DIFFERENT PQM ALGORITHMS VS. CLINICAL OUTCOMES

- Connect PQM Score with Outcomes.
- Allows standardization of:
 - Plan Objectives
 - Plan Strategies
 - Plan Review Methods
 - Peer Review

SUMMARY OF PQM APPLICATIONS

