2014 AAPM Spring Clinical Meeting

TIPS AND PLANNING STRATEGIES FOR BEST PRACTICES

GREG ROBINSON, MS, CMD, RT(T)

What special techniques were used to ensure target coverage?

Target Coverage

- Highest priority in optimization
- Clean the contours (clean ROI/ post process, etc.)
- Optimization contours separate or add gradients// back from skin at least 3-5mm
- Evaluate overlap areas of OAR and opt Targets
- VMAT (cheater PTV ~ 1mm)
- Rings (separated or gradient) to "squeeze" dose in
- "Double down" on optimization structures
- Beam arrangement (circumferential vs. hemisphere)// PA beam
- Inner rind of 3mm to "boost" edge for coverage

What special techniques were used when approaching a multiple PTV case?

Multiple PTVs

- Isocenter location close to high dose PTV
- Separate targets
- Ensure there are no conflicting objectives
- Gradient margins
- Rings follow same gradient approach (1mm, 5mm, etc.)

What special techniques were used when trying to make your plan as conformal as possible?

Conformality

- Push the rings until target coverage budges ... then stop!!!
- 2 normal tissue contours with margin
- Non-overlapping rings
- Overlap areas with bowel/ bladder (treat as a target)
- VMAT (lock jaw width <15cm)
- Fluence editing
- Respect the point of diminishing returns for conformality
- Multiple DVH objectives on the rings (not just a max dose)

What special techniques were used when trying to keep your plan from getting too "hot"?

Controlling "hotness"

- Small, incremental steps
- Special smaller structures isodose to contour
- Each time take away something off OAR, raise priority on targets
- Extreme high priority on max dose
- "wash plan" after final optimization one last time
- VMAT adding a 3rd partial arc// TOMO (pinhole in middle of target)
- Optimization numbers very close together
- Separate GTV from PTV run hotter with loose constraints
- Use body as constraint for extra emphasis
- Fluence editing

What special techniques were used when sparing OAR's (organs at risk), without sacrificing target coverage or conformity?

Sparing OAR's

- Address overlap areas prior to optimizing
- Clone OAR separate
- Separate opti structures from targets mean dose
- EUD, Biological, etc.
- Never take OAR higher than target
- Hardly had to do anything for this plan
- Multiple optimizations to pause and wait
- Mean dose in optimization, in addition to max
- Beam arrangement evaluating
- Step into them gently

3/1/2014

List for IMRT/ VMAT Best

Practices

#10 – Consistent Plan Evaluation

- Clear, reasonable goals from the physician
- Rx prior to planning
- Dose grid settings
- Algorithm used
- Consistent field labels/ plan labels
- DVH/ metric analysis of every goal
- Consider using advanced metrics (conformation number)
- The "Smell Test" (isodose lines vs. color wash)
- How is "hotness" defined? (consider absolute volumes)
- USE ABSOLUTE DOSE!!!

#9 – "Where is the normalization handbook?"

- Every TPS has different normalization settings
- Seems to be a lot of confusion
- Physicians normalizing to DVH (not an isodose line)
- Print plans with actual dose being delivered
- USE ABSOLUTE DOSE!!!

#8 – "Isn't that special!"

- Prove concept of special TPS-specific tools
- Make the heavy service contracts worth the expense!
- Advanced features can save time
- Efficiency of planning and delivery
- Increase consistency inter-planner
- Examples (biological, NTO, fluence editing)

#7 – "Dip your toes in the water"

- Small incremental steps
- Optimize to targets only
- Do not try to overload the optimizer at the start
- See what is possible
- If there is an issue, check contours
- Re-evaluate approach if targets are being compromised

#6 – "Build a good foundation first"

- Beam arrangement can make or break a plan
- More is not always better
- Not enough can lead to headaches
- Consider varying beam arrangements
- Fixing jaws to improve delivery (VMAT)
- Isocenter placement
- Energy selection (mixed; 10x if available)

Beam Summary					
Beam Details	Geometry (IEC)	Modifiers	BEV Intensity	# CPs	Meterset
[1] Name: 1 Photon Treatment (Dynamic-IMRT) Machine: 21 IX, Energy: 6 MV # Fractions: 28 (Fx Group 1)	Gantry (deg): 180 Collimator (deg): 0 Couch (deg): 0 Isocenter [DICOM] (mm): (-0.5,-10.9,-18.0) Isocenter [Couch] (mm): (0.0,0,0,0.0)	X Jaws*: X1 = -110 mm / X2 = 123 mm Y Jaws*: Y1 = -125 mm / Y2 = 100 mm * Max jaw extents (all control points) Multi-Leaf Collimation (X)		289	378 MU
[5] Name: 2 Photon Treatment (Dynamic-IMRT) Machine: 21 IX, Energy: 6 MV # Fractions: 28 (Fx Group 1)	Gantry (deg): 105 Collimator (deg): 350 Couch (deg): 0 Isocenter [DICOM] (mm): (-0.5,-10.9,-18.0) Isocenter [Couch] (mm): (0.0,0.0,0.0)	X Jaws*: X1 = -93 mm / X2 = 90 mm Y Jaws*: Y1 = -115 mm / Y2 = 103 mm * Max jaw extents (all control points) Multi-Leaf Collimation (X)	-	263	360 MU
[4] Name: 3 Photon Treatment (Dynamic-IMRT) Machine: 21 IX, Energy: 6 MV # Fractions: 28 (Fx Group 1)	Gantry (deg): 40 Collimator (deg): 270 Couch (deg): 0 Isocenter [DICOM] (mm): (-0.5,-10.9,-18.0) Isocenter [Couch] (mm): (0.0,0.0,0.0)	X Jaws*: X1 = -113 mm / X2 = 125 mm Y Jaws*: Y1 = -110 mm / Y2 = 75 mm * Max jaw extents (all control points) Multi-Leaf Collimation (X)		313	381 MU
[3] Name: 4 Photon Treatment (Dynamic-IMRT) Machine: 21 IX, Energy: 6 MV # Fractions: 28 (Fx Group 1)	Gantry (deg): 320 Collimator (deg): 265 Couch (deg): 0 Isocenter [DICOM] (mm): (-0.5,-10.9,-18.0) Isocenter [Couch] (mm): (0.0,0.0,0.0)	X Jaws*: X1 = -110 mm / X2 = 128 mm Y Jaws*: Y1 = -80 mm / Y2 = 103 mm * Max jaw extents (all control points) Multi-Leaf Collimation (X)	-	318	366 MU
[2] Name: 5 Photon Treatment (Dynamic-IMRT) Machine: 21 IX, Energy: 6 MV # Fractions: 28 (Fx Group 1)	Gantry (deg): 255 Collimator (deg): 10 Couch (deg): 0 Isocenter [DICOM] (mm): (-0.5,-10.9,-18.0) Isocenter [Couch] (mm): (0.0,0.0,0.0)	X Jaws*: X1 = -88 mm / X2 = 100 mm Y Jaws*: Y1 = -115 mm / Y2 = 103 mm * Max jaw extents (all control points) Multi-Leaf Collimation (X)		260	321 MU
NOTE: "IMRT" label(s) derived from: 1) us	age of MLC and 2) multiple segments.		Totals:	1443 CPs	1806 MU

#5 – "As the collimator turns..."

- Collimate when possible
- Static beams look at Beams Eye View with targets turned on
- VMAT turn varying degrees for each arc
- Obtain coverage easier
- Plans more homogenous

Beam Summary [Number: 1, Name: Field	1]			
Beam Details	Geometry (IEC)	Modifiers	# CPs	Meterset
[1] Name: Field 1 Photon Treatment (VMAT) Machine: NovalisTx, Energy: 6 MV # Fractions: 28 (Fx Group 1)	Gantry Motion: CCW Gantry Start-to-End, IEC (deg): 179.9-to-220.1 Collimator (deg): 10 Couch (deg): 0 Isocenter [DICOM] (mm): (-8.0,-8.0,-20.0) Isocenter [Couch] (mm): (0.0,0.0,0.0)	X Jaws: X1 = -55 mm / X2 = 105 mm Y Jaws: Y1 = -110 mm / Y2 = 110 mm Multi-Leaf Collimation (X)	177	254.113 MU
Projection Distance: 100.00 c DRR Constructed for Start Ar		Beam Geometry Schematic		

#4 – "Garbage in, garbage out."

- Don't confuse the optimizer!
 - Abutting/ overlapping contours
 - Poor priority weighting
 - Keep it simple and practical

#3 – "Go the extra mile with contours"

- Even with special, efficiency tools in TPS extra contours are still VERY valuable
 - Rings
 - Normal Tissue
 - Specific dose control structures
- Convert isodose lines to contours to "wash the plan"

#2 – "Don't forget the physical limits"

- Gradient margins they are important!
- 5-10%/mm dose fall-off is a good rule of thumb
- Use for targets
- Use for rings
- Use for OAR's

#1 – "The more things change, the more they stay the same."

- CONTOURS, CONTOURS, CONTOURS
- Optimization Contours
- Cleaning targets
- Standardization of names, colors, etc.
- Smoothing contours

