Safety Risk Management in RT: A Software Manufacturer Perspective

Jim Schewe, Ph.D. Philips Radiation Oncology Systems AAPM Spring Clinical Meeting March 16, 2014

Learning Objectives For the session

AAPM Spring Clinical Meeting

March 15-18, 2014 - Denver, Colorado - Denver Marriott Tech Center

- 1. Understand the structure and mission of the Radiation Oncology Safety Stakeholders' Initiative (ROSSI).
- 2. Learn about how the clinical community and vendors are collaborating to help improve the usability, quality, and safety of medical devices and clinical practice.
- 3. Understand the basics of Safety Risk Management, its relationship to the product lifecycle, and the similarities and differences in how it applies to products and clinical practice.
- 4. Understand the basics of Usability and its relationship to the safety of medical devices, including problems and recommended improvements with the content and frequency of software error messages.

Outline

- Background
- Risk Management Process
 - The Standard: ISO 14971
 - Practical Examples
- Discussion
 - Industry vs. the Clinic: Similarities and Differences
 - -General Comments

3

Conflicts of Interest

LIBERAL-ARTS MAJORS MAY BE ANNOYING SOMETIMES, BUT THERE'S NOTHING MORE OBNOXIOUS THAN A PHYSICIST FIRST ENCOUNTERING A NEW SUBJECT. I work for Philips

l'm not a:

- Regulatory Affairs Expert
- Software Engineer
- Usability/Human Factors Engineer

clinical I'm a[^] physicist

http://xkcd.com/793/

So...

What would you say you *do* here?

Day Job: Design Engineering

- Requirements
- -Risk Management
- Testing
- Documentation
- Defect Review
- Change Management

"Other Duties As Assigned"

- -Third-Tier Support
- Complaint Investigations
- Regulatory Support
- -Sales & Marketing Support
- -ROSSI & MITA & etc.

5

ment

Background: Context

Safety Risk Management is:

- ... central to any medical device. It drives:
 - Requirements
 - Design
 - Testing
 - Documentation
- ... related to ROSSI concerns:
 - Quality Assurance
 - Training
 - Usability

6

- Error Messages
- Risk Management (pending approval)
- ... potentially a driver of RT clinical practice
 - Any device you use is a part of that practice

Background: Process Stuff

Product Development Process: "Waterfall"

http://en.wikipedia.org/wiki/V-Model

AAPM Spring Clinical Meeting

March 15-18, 2014 - Denver, Colorado - Denver Marriott Tech Center

Outline

Background

- Risk Management Process
 - The Standard: ISO 14971
 - Practical Examples
- Discussion

- Industry vs. the Clinic: Similarities and Differences

-General Comments

8

INTERNATIONAL STANDARD

ISO 14971

Second edition 2007-03-01

Corrected version 2007-10-01

Medical devices — Application of risk management to medical devices

Dispositifs médicaux — Application de la gestion des risques aux dispositifs médicaux

> Reference number ISO 14971:2007(E)

AAPM Spring Clinical Meeting

March 15-18, 2014 - Denver, Colorado - Denver Marriott Tech Center

© ISO 2007

Contents

The Devil is in the Details

Formal Content:

- 1. Scope
- 2. Terms & Definitions
- 3. General Requirements
- 4. Risk Analysis
- 5. Risk Evaluation
- 6. Risk Control
- 7. Evaluating Overall Acceptability
- 8. Risk Management Report
- 9. Production & Post-Production

"Informative" Annexes

- A. Rationale for requirements
- B. Process overview
- C. Questions to ask about the device
- D. Risk concepts and medical devices
- E. Hazards, foreseeable sequences of events, & hazardous situations
- F. Risk Management Plan
- G. Info on RM techniques
- H. Guidance for *in vivo* devices
- I. Guidance for bio hazards
- J. Info about residual risk

65 Pages

15 Pages

PM Spring Clinical Meeting

March 15-18, 2014 - Denver, Colorado - Denver Marriott Tech Ce

Schewe: Safety Risk Management

Scope Section 1

"This International Standard specifies a process for a manufacturer to identify the hazards associated with medical devices, including *in vitro* diagnostic (IVD) medical devices, to estimate and evaluate the associated risks, to control these risks, and to monitor the effectiveness of the controls.

The requirements of this International Standard are applicable to all stages of the life-cycle of a medical device.

This International Standard does not apply to clinical decision making.

This International Standard does not specify acceptable risk levels.

This International Standard does not require that the manufacturer have a quality management system in place. However, risk management can be an integral part of a quality management system."

The duration of the Risk Management process is:

20%	1.	During requirements writing	
20%	2.	During product development	
20%	3.	During beta testing	
20%	4.	During a complaint investigation	
20%	5.	During the whole product life-cy	cle

AAPM Spring Clinical Meeting

March 15-18, 2014 - Denver, Colorado - Denver Marriott Tech Center

The duration of the Risk Management process is:

5: During the whole product life-cycle

"The requirements of this International Standard are applicable to all stages of the lifecycle of a medical device." (Section 1: Intro)

M Spring Clinical Meeting

March 15-18, 2014 - Denver, Colorado - Denver Marriott Tech Ce

Terminology

Section 2: A subset

<u>Harm</u>: physical injury or damage to the health of people, or damage to property or the environment
 <u>Hazard</u>: potential source of harm
 <u>Hazardous Situation</u>: circumstance in which people, property, or the environment are exposed to one or more hazard(s)

<u>**Risk</u>**: combination of the probability of occurrence of harm and the severity of that harm</u>

Risk Control

- Residual Risk
- Risk Analysis

14

- Risk Estimation
- Risk Assessment
- Risk Management

<u>Safety</u>: freedom from unacceptable risk

Hazardous Situations, Risk, and Harm Not the same thing

x

AAPM Spring Clinical Meeting

March 15-18, 2014 - Denver, Colorado - Denver Marriott Tech Center

- P = Probability of harm
 - Not of a fault (defect)
 - Not of a mistake
 - Not of a hazardous situation
- ➔ Chain of events is important

No separate detectability score

Risk \neq P x S (in general)

Risk is the combination of:

20%	1.	Harm & its potential source
20%	2.	Damage to health & property
20%	3.	Probability of harm & its severity
20%	4.	Probability of harm & its detectability
20%	5.	A hazardous situation & its cause

AAPM Spring Clinical Meeting

March 15-18, 2014 - Denver, Colorado - Denver Marriott Tech Center

Risk is the combination of:

3: Probability of harm & its severity

ISO 14971:2007(E)

2.16 risk combination of the probability of occurrence of harm and the severity of that harm

[ISO/IEC Guide 51:1999, definition 3.2]

Risk Management Process The Big Picture

Risk Assessment

Risk Control

Overall Risk Evaluation

Risk Management Report

Production & post-production

Schewe: Safety Risk Management

Risk Assessment Analysis & Evaluation

Risk Analysis:

- Document intended use and
 - "reasonably foreseeable misuse."
- Identify Hazards
- Estimate Risks

Risk Evaluation

– Is the (individual) risk Acceptable?

Estimating Risk Example Qualitative S and P Levels

Table D.1 — Examples of qualitative severity level

Common terms	Possible description
Significant	Death or loss of function or structure
Moderate	Reversible or minor injury
Negligible	Will not cause injury or will injure slightly

Table D.2 — Simplified examples of qualitative probability levels

Common terms	Possible description
High	Likely to happen, often, frequent
Medium	Can happen, but not frequently
Low	Unlikely to happen, rare, remote

Estimating Risk

Example Semi-Quantitative S and P Levels

Common terms	Possible description		
Catastrophic	Results in patient death		
Critical	Results in permanent impairment or life-threatening injury		
Serious	Results in injury or impairment requiring professional medical intervention		
Minor	Results in temporary injury or impairment not requiring professional medical intervention		
Negligible	Inconvenience or temporary discomfort		

Table D.4 — Example of semi-quantitative probability levels

Common terms	Examples of probability range
Frequent	≥ 10 ⁻³
Probable	$< 10^{-3}$ and $\ge 10^{-4}$
Occasional	$<10^{-4}$ and $\geqslant10^{-5}$
Remote	$< 10^{-5}$ and $\ge 10^{-6}$
Improbable	< 10 ⁻⁶

PHILIPS

Probability

Questions to ask

General:

- Does the hazardous situation occur in the absence of a failure?
- Does the hazardous situation occur in a fault condition?
- Does the hazardous situation occur only in a multiple-fault condition?
- How likely is it that a hazardous situation will lead to harm?

Context:

- How often is the device used?
- What is its lifetime?
- Who makes up the user and patient populations?
- What is the number of users/patients?
- How long and under what circumstances is the user/patient exposed?

Risk Evaluation and Acceptability

Qualitative severity levels

	Qualitative severity levels				
	Negligible	Minor	Serious	Critical	Catastrophic
Frequent					
Probable	R ₁	R ₂			
Occasional		R ₄		R ₅	R ₆
Remote					
Improbable			R ₃		
	Frequent Probable Occasional Remote Improbable	Negligible Frequent Probable R_1 Occasional Remote Improbable	Qua Negligible Minor Frequent Probable R_1 R_2 Occasional Remote Improbable	Qualitative severity Negligible Minor Serious Frequent Probable R_1 R_2 Occasional R_4 Improbable R_3	Qualitative severity levelsNegligibleMinorSeriousCriticalFrequent </td

Key

unacceptable risk

acceptable risk

		qualitative services				
		Negligible	Minor	Serious	Critical	Catastrophic
	Frequent					
Semi-	Probable	R ₁	R ₂			
quantitative probability	Occasional		R ₄		R ₅	R ₆
levels	Remote					
	Improbable			R ₃		

Key

unacceptable risk

investigate further risk reduction

insignificant risk

AAPM Spring Clinical Meeting March 15-18, 2014 · Denver, Colorado · Denver Marriott Tech Center

A given risk can be:

- Unacceptable
- Acceptable
 - -"Insignificant"
 - –"Further investigation"

"This International Standard does not specify acceptable risk levels."

PHILIPS

Acceptable Risk

Context is Important

General Device Warnings

Do not load non-system software onto the computer used by this system without the direct authorization of Philips Medical Systems. Feature performance and safety may be compromised. To assure proper treatment, it is critical that a qualified medical person review and verify all system treatment plan parameters using an independent verification method prior to treating patients using the plan. We recommend that you review TG40, TG53, and other pertinent radiation therapy treatment standards and incorporate those methods into your clinical practice to ensure that your use of the system results in the most accurate treatment plans. TG40, TG53, and other reports are availab Use of Pinnacle³ in Radiation Therapy Physicists in Medicine (AAPM) website. **Risks and Benefits** Comprehensive QA for radiation oncology: Report of AAPM Radia Medical Physics 21(4), 1994. A White Paper American Association of Physicists in Medicine Radiation Therapy Approved By Name Signature and Date assurance for clinical radiotherapy treatment planning. Medical Phy Clinical Reviewer. Lisa Beckett. Certified Medical RT(R)(T), CMD Lisa Beckett The following clinical practices are recommended to verify the accur-Dosimetrist An independent calculation of the monitor units for each beam of Clinical Reviewer. Jim Schewe, Ph.D. brachytherapy plan. Jim s (Cleveland), Inc. ou-N Certified Medical DABMP Acquisition and review of portal images or review of multi-leaf colliphysicist Schewe the treatment system. Author, Certified Mark Pepelea, Mark A chart check prior to the plan being delivered or during the first ns (Cleveland), Inc, ou-Nucle Ine - PROS, Medical Physicist Ph.D., DABR Pepelea ate: 2013.02.25 15:31:53 -06'00 Independent review of the treatment plan prior to the delivery. Don Wellnitz Digitally signed by Don Wellnitz Manager, Systems the cut-PROS Don Wellnitz Engineering Cross-functional review of the plan in a weekly chart round. eason: Reviewed and approved ate: 2013.02.26 08:14:21 -06'00' Quality and Jill Kaeder Manual verification of record and verify settings after transfer to the Jill Kaeder Regulatory Verification of the SSD and field shape during patient setup. Terry Ward Director, Digitally signed by R. Terry Ward DN: cn=R. Terry Ward, o=Philips Medical Systems (Cleveland) Inc. R. Terrv Development These reviews should be performed for a new plan or when a change Engineering nail=terry.ward@philips.com Ward e: 2013.02.26.09:24:32.-06'0 Dominic Siewko Senior Manager, Radiation Health & Dominic Product Safety

"because this International Standard does not define acceptable risk levels, top **management** is required to establish a policy on how acceptable risks will be determined;"

. . .

...

AAPM Spring Clinical Meeting March 15-18, 2014 - Denver, Colorado - Denver Marriott Tech Center

Siewko

Acceptable risk levels are set by:

20%	1.	The ISO 14971 standard
20%	2.	The IAEA 1540 Report
20%	3.	The manufacturer
20%	4.	The AAPM TG-100 report
20%	5.	The FDA

Acceptable risk levels are set by:

3: The manufacturer

... "because this International Standard does not define acceptable risk levels, **top management** is required to establish a policy on how acceptable risks will be determined;" (Section A.2.3.2)

"Top management shall define and document the policy for determining criteria for risk acceptability; this policy shall ensure that criteria are based upon applicable national or regional regulations and relevant International Standards, and take into account available information such as the generally accepted state of the art and known stakeholder concerns;" (Section 3.2)

...

Risk Control

Mitigation

Risk management

"The manufacturer shall use one or more of the following risk control options in the priority order listed:

- a) inherent safety by design;
- b) protective measures in the medical device itself or in the manufacturing process;
- c) information for safety."

"Hierarchy of Effectiveness"

http://www.cassiemcdaniel.com/blog/ hierarchy-of-effectiveness-process/

PHILIPS

Which is the best risk control to prevent use of an unapproved plan?

20%	1.	Extra training	
20%	2.	Preventing data export	
20%	3.	A warning message in the GUI	
20%	4.	An explanation in the user manual	
20%	5.	Displaying "Unapproved" in a big for	ont

AAPM Spring Clinical Meeting

March 15-18, 2014 - Denver, Colorado - Denver Marriott Tech Center

Which is the best risk control to prevent use of an unapproved plan? 2: Preventing data export

"The manufacturer shall use one or more of the following risk control options in the priority order listed:

- a) inherent safety by design;
- b) protective measures in the medical device itself or in the manufacturing process;
- c) information for safety."

PM Spring Clinical Meeting

March 15-18, 2014 - Denver, Colorado - Denver Marriott Tech C

Section 6.2, Risk control option analysis

Example: State Management

Keeping things in sync

"The system must invalidate dose if the user changes the couch, gantry, or collimator angles after dose has been computed."

• Severity / Probability

- inherent safety by design;
- protective measures in the medical device itself or in the manufacturing process;
- information for safety.

PHILIPS

30

Schewe: Safety Risk Management

Example: Limit Checking

How bad can it be?

-		IMRT Parameters		· []
Optimization	Conversion		Trial	SmartArc Dual 🔤
Max iterations Convolution dose iteration Optimizer	I 40 I 12	Stopping tolerance] 1e-05	
Beam Optimization Ty	pe Allow jav	w Use current jaws as max	# of arcs to create Final gantry spacing (deg)	Maximum Estimated delivery delivery time (sec) time (sec)
SmartArc_2 SmartArc				
DMPO Int Beam SmartArc Gantry Rotation directio	n Q R c	SmartArc Constrain leaf motion Compute intermediate dose	Segment Weight	Final gantry spacing (deg)
270 90 Start angle 180 Stop angle	2.0 F	ine resolution ODM	ŵYes ✦No	2

"The system shall allow the user to specify the final control point spacing of 2, 3, or 4 degrees."

Severity Probability

- inherent safety by design;
- protective measures in the medical device itself or in the manufacturing process;
- information for safety.

Example: Combining Controls

"The software shall print "NOT FOR CLINICAL USE" watermark across the printed reports and color prints, for any trials that are not for clinical use, in addition to printing "NOT FOR CLINICAL USE" in the plan authorization line. "

Also tilde on MU Also export restrictions

- Severity / Probability
- inherent safety by design;
 - protective measures in the medical device itself or in the manufacturing process; information for safety.

Risk management

Wrapping it Up

Overall Acceptability and Report

"Overall Residual Risk Acceptability"

• Marginal issues can add up

RM Report: Formal Summary

• Can be a meta-document

Production & Post-Production Feedback

You learn from:

- Testing
- Defects
- Complaints
- Etc.

Risk management

Risk Management File is a "living document"

Example: Post-Production Feedback

Default Isocenter for Setup Beams

AAPM Spring Clinical Meeting

March 15-18, 2014 - Denver, Colorado - Denver Marriott Tech Center

"There shall be no default isocenter assigned to the setup beams." "There shall be no default machine assigned to the setup beams."

- Severity / Probability
- inherent safety by design;
- protective measures in the medical device itself or in the manufacturing process;
- information for safety.

Other Standards and Human Factors Issues

Automation, Defaults, and Forcing Functions

Specification and Acceptance Testing of Radiotherapy Treatment Planning Systems

AEA

April 2007

IAEA-TECDOC-1540

	Confirm Plan Setup	r
Scanner None Patient Setup Information		Trial: Trial_1.
Patient position during scan:	On back (supine)	
Patient orientation on table:	Head First Into Scanner	
Scan acquisition direction:	Table Moves Into Scanner	
CT–Density Table for Dose Calculation	LinearDRRTable	
Use table for:	DRRs and Dose	Slice 17: 7 - 14 300 BrainStereoCT
Isocenter Shifts Reporting:	Laser	Transverse
Scanner direction information for laser expo	rt	
In (toward the gantry):	not set	
CT Number Density 4 0 0.000 1.000 1000 1.000 3.000	3.0 2.5 2.0 Density 1.5 1.0 0.5	
Accept Cancel and Exit	CT Numi	ber Help

AAPM Spring Clinical Meeting March 15-18, 2014 · Denver, Colorado · Denver Marriott Tech Center Schewe: Safety Risk Management

Outline

- Background
- Risk Management Process

 The Standard: ISO 14971
 Practical Examples
- Discussion
 - Industry vs. the Clinic: Similarities and Differences
 - General Comments

37

Rules and Regulators

Different Rules and Enforcement

Industry

- Standards: ISO, IAEA, IEC...
- Enforcement: FDA

Clinic

38

- Standards: AAPM, ASTRO, ACR...
- Enforcement: State, NRC

➔ Mechanical process details may vary

- Scoring, Testing, Traceability, Documentation...

Scope

Both Bigger and Smaller "Device" vs. "Process"

Industry: *General* solutions for your *specific* clinic

- Different types of centers
 - Big/Academic vs. Small/Community
 - Different practices and equipment
- Interoperability with other systems (and vendors)
 - Imaging
 - Treatment Planning Systems

AAPM Spring Clinical Meeting

March 15-18, 2014 - Denver, Colorado - Denver Marriott Tech C

- Linear Accelerators
- Brachytherapy
- Treatment Management Systems

Clinic: Any product is a *subset* of your system

- May have multiple centers & techniques
- Your workflow is unique

Stakeholders

Both Worlds are Interdisciplinary

→ Safety has to be too

Industry:

- Clinicians, Engineers, Marketing, Regulatory, Support, Management Clinic:
- Physics, Dosimetry, MDs, Therapists, IT, Management

Both:

- Somebody has to own it
- Everybody has to buy into it
- Communication is a big deal
- Cultural issues are important
 - Fear of blame
 - Deferral to "experts"

AAPM Spring Clinical Meeting

March 15-18, 2014 - Denver, Colorado - Denver Marriott Tech Center

Lack of empowerment to speak up

Special Article

The challenge of maximizing safety in radiation oncology

Lawrence B. Marks MD^{a,*}, Marianne Jackson MD, MPH^a, Liyi Xie MD^{a,b}, Sha X. Chang PhD^a, Katharin Deschesne Burkhardt MS, DABR^a, Lukasz Mazur PhD^c, Ellen L. Jones MD, PhD^a, Patricia Saponaro MS^a, Dana LaChapelle RTT^a, Dee C. Baynes RN, BSN^a, Robert D. Adams EdD, CMD^a

^aDepartment of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina ^bDepartment of Radiation Oncology, Fudan University Shanghai Cancer Center and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China ^cIndustrial Extension Service, North Carolina State University, Raleigh, North Carolina

Practical Radiation Oncology (2011) 1, 2–14

Change Is Impactful

Even change for the better

Any change can alter "understood" risks

-Paper-

NEW TECHNOLOGIES IN RADIATION THERAPY: ENSURING PATIENT SAFETY, RADIATION SAFETY AND REGULATORY ISSUES IN RADIATION ONCOLOGY

Howard I. Amols*

New technology→new risks

• May also change old ones

Communication is key

Health Phys. 2008;95:658-665.

AAPM Spring Clinical Meeting

March 15-18, 2014 - Denver, Colorado - Denver Marriott Tech Center

Change is Impactful (2)

"There are probably children out there holding down spacebar to stay warm in the winter! YOUR UPDATE MURDERS CHILDREN."

https://xkcd.com/1172/

AAPM Spring Clinical Meeting

March 15-18, 2014 - Denver, Colorado - Denver Marriott Tech Center

LAIEST: 10.17

UPDAIE

CHANGES IN VERSION 10.17: THE CPU NO LONGER OVERHEATS WHEN YOU HOLD DOWN SPACEBAR.

COMMENTS:

LONGTIME USERY WRITES:

THIS UPDATE BROKE MY WORKFLOW! MY CONTROL KEY IS HARD TO REACH, SO I HOLD SPACEBAR INSTEAD, AND I CONFIGURED EMACS TO INTERPRET A RAPID TEMPERATURE RISE AS "CONTROL".

ADMIN WRITES: THAT'S HORRIFYING.

LOOK, MY SETUP WORKS FOR ME. JUST ADD AN OPTION TO REENABLE SPACEBAR HEATING.

EVERY CHANGE BREAKS SOMEONE'S WORKFLOW.

There are Always Trade-Offs

How Much Redundancy In Risk Controls?

Some is good! \rightarrow Robustness

But: A few good mitigations is better than a lot of bad ones

- More is only better if they are *independent*
- Implementing & testing takes time: spend it wisely
- Fatigue can be a problem

http://www.riskmanagementmag azine.com.au/opinion/riskculture-all-talk-and-no-action-126516.aspx

There are Always Trade-Offs

Competing Priorities

- Regulatory Compliance
- Legal Issues
- Business
- Workflow & Efficiency
 - -Speed vs. Accuracy
 - Efficiency vs. explicit user action
 - Automation

AAPM Spring Clinical Meeting

March 15-18, 2014 - Denver, Colorado - Denver Marriott Tech Center

Defaults

Final Comments

Practical Stuff

The process is (almost) as important as the end product

- Get started
- Talk to each other

Don't let the perfect be the enemy of the good

- Keep it as simple as you can
- Big Picture vs. Details

Feedback is important

- This is a life-cycle process: you are never "done"
- Learn from your mistakes... and other people's too

45

Thank You

