Beyond auditing: What we have learned from phantom credentialing for clinical trials

Stephen F. Kry PhD

Radiological Physics Center, The University of Texas MD Anderson Cancer Center, Houston, TX Spring Clinical AAPM Meeting 2014

THE UNIVERSITY OF TEXAS MDAnderson Cancer Center

RPC

- Radiological Physics Center is scientific agency that supports NCI-run clinical trials
 - Verify that institutions are delivering the dose they believe they are delivering
- Have been doing this since 1968
- Monitor >1800 RT facilities
 - Many tools mailable output checks, site visits, phantoms, patient chart dose recalculations
- Phantoms!

The RPC Phantom Family

10 prostate phantoms (IMRT)

13 lung phantoms

8 liver insert

25 H&N phantoms (IMRT)

16 SRS phantoms

RPC activities - Phantoms

- Mail a phantom to an institution

 Includes target(s) and dosimeters
- The institution treats it like a patient – Sim, plan, setup, treat
- The RPC analyses the results and compares the measured dose distribution to the institution's TPS calculation
- Large history of irradiations
 - ->3000 phantoms

Phantom Audits

- Can an institution deliver the dose they intended
- Pass => participation in clinical trials
- What else have we learned?
 - Lung phantom: Heterogeneous calculations
 - H&N phantom: phantom versus IMRT QA
 - Proton phantoms: material stopping power

Lessons from the Lung phantom

 Different algorithms show different levels of dose agreement in the RPC lung phantom.

Physics Contribution

Algorithms Used in Heterogeneous Dose Calculations Show Systematic Differences as Measured With the Radiological Physics Center's Anthropomorphic Thorax Phantom Used for RTOG Credentialing

Stephen F. Kry, PhD, * Paola Alvarez, MS, * Andrea Molineu, MS, * Carrie Amador, BS, * James Galvin, DSc,[†] and David S. Followill, PhD*

*Radiological Physics Center, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas; [†]American College of Radiology/Radiation Therapy Oncology Group, Philadelphia, Pennsylvania

Received Jan 10, 2012, and in revised form Aug 24, 2012. Accepted for publication Aug 29, 2012

Heterogeneous conditions:

- Lung phantom
 - 2 TLD in center of lung target (3 cm x 5 cm)
 - Film in 3 planes
- Homogeneous results within 1% (Ibbott)

Initial work: low quality algorithms

Cyberknife pencil beam algorithm

TLD	Calculated		Measured		06	
	Dose (cGy)	% SD	Avg. Dose (cGy)	% SD	Difference	
PTV Sup.	610.3	1.1%	533.6	0.5%	-13.4%	
PTV Inf.	592.9	2.4%	517.3	0.8%	-13.6%	
Avg. PTV	601.6	2.1%	525.4	1.8%	-13.5%	
Cord	42.1	2.2%	27.8	1.3%	-40.9%	
Heart	63.6	5.6%	45.7	2.3%	-32.8%	

Thoracic dose calculations

- Homogeneous and low quality heterogeneous dose calculations (e.g., Batho-corrected pencil beam) are highly inaccurate and inconsistent.
- These algorithms are not allowed in NCI-sponsored clinical trials involving the lung
- AAPM minimum practice statement
 - TG-244: Commissioning and QA of TPS in EBRT
 - b. Recommendations
 - i. To produce acceptable dosimetric accuracy in highly heterogeneous media (particularly in lung), an algorithm comparable to C/S, CC, MC, or GBBS-based dose calculation algorithm must be used.
- Convolution-Superposition/AAA algorithms are generally considered accurate

Irradiations

• In this study: - 304 irradiations – 6 MV irradiations IMRT or 3D CRT Moving or static - Various algorithms All used heterogeneity corrections Evaluate - TLD dose (vs TPS) Planar agreement DTA or gamma

Algorithm Class	Commercial Product	N
Monte Carlo		32
	MultiPlan	25
	BrainLab	3
	CMS Monaco	2
	In-house	1
CS/AAA		236
	Eclipse AAA	98
	Pinnacle CS	90
	CMS Xio CS	23
	Tomotherapy CS	25
Pencil Beam		36
	Eclipse PBA	28
	Elekta PrecisePLAN	2
	BrainLab	2
	CMS Xio	1
	In-house	3

TLD Measurement vs TPS calculation

TLD Dose Findings

- Measured doses systematically lower than calculated doses for C/S AAA algorithms (p<0.0001)
- No significant difference between C/S AAA algorithms
- For C/S AAA algorithms:
- No significant difference between IMRT (mean=0.963) and 3D CRT (mean=0.964) irradiations (p=0.7)
- No significant difference between moving (mean=0.961) and static (mean=0.964) irradiations (p=0.5)
- No significant trend versus irradiation date (p=0.2)

Systematic calculation discrepancy

- Overestimation of dose with C/S AAA (3.7%)
- Dose to center of target
- Other studies showing similar results
 - Monte Carlo lung plans hotter than C/S
 - Larger 100% isodose volume

Physics Contribution

Dosimetric Verification Using Monte Carlo Calculations for Tissue Heterogeneity-Corrected Conformal Treatment Plans Following RTOG 0813 Dosimetric Criteria for Lung Cancer Stereotactic Body Radiotherapy

Jun Li, Ph.D.,* James Galvin, D.Sc.,* Amy Harrison, M.Sc.,* Robert Timmerman, M.D., † Yan Yu, Ph.D.,* and Ying Xiao, Ph.D.*

Int J Radiation Oncol Biol Phys, Vol. 84, No. 2, pp. 508-513, 2012

What does this mean?

- Issue for dose calculation accuracy (AAPM TG-65 goal: 1-2%)
- Potentially issue for dose reporting/prescribing

Update to these results

- Another 1.5 years of phantom results
- Acuros (n=13)
 Unique radiation transport algorithm
- More Monte Carlo (n=57)
 - Multiplan (n=34)
 - BrainLab (n=12)
 - Monaco (n=10)
- More C/S (n=457)

Updated results

Monte Carlo results are not consistent.....

Update summary

- More variability than expected between different algorithms
- Acuros different than MC or C/S
- Monte Carlo results not uniformly consistent
- Why so much difference???

What to do?

- Note that we see some inconsistencies
- Understand where this arises in clinical practice, and how much difference there is

 Pressure manufacturers to improve dose calculation accuracy

Lessons from the H&N phantom

 How do phantom results compare to IMRT QA results?

Does IMRT QA predict RPC phantom results?

IMRT QA

- IMRT QA comes in many flavours
 - Detectors, detector geometries, delivery geometry, tolerances, analysis techniques, ROI selected, analysis software and on and on.....
- All flavours are used. None are repeated
- At the end of the day, they should evaluate a treatment plan

- Are you delivering what you think you are?

IMRT QA

 We collected institutional IMRT QA results for H&N phantom plans

- Compare them with phantom results

- Abstracted 1005 H&N phantom results and corresponding IMRT QA results
- Excluded
 - No/unintelligible IMRT QA results
 - Adjusted MU between IMRT QA and phantom

Methods

- 855 records
 - 122 failed phantom irradiation
- First sorting:
 - Considered to pass IMRT QA unless stated otherwise
- Truth tables to calculate sensitivity and specificity of IMRT QA relative to RPC phantom

Results

Institution declared "failed" IMRT QA

- Sensitivity: $2(\pm 1)\%$ (Failing plan identified as failing)
- Specificity: 99.6 $(\pm 0.2)\%$ (Passing plan identified as passing)

Results

- Re-evaluate institution IMRT QA
 - ->3% absolute dose disagreement
 - <90% of pixels passing at least 3%/3mm</p>

- Sensitivity: $18(\pm 4)\%$ (Failing plan identified as failing)
- Specificity: $91(\pm 1)\%$ (Passing plan identified as passing)

Summary of all Results

	Number	Sensitivity in % (st. dev.)	Specificity in % (st. dev.)
ALL RESULTS			
Institution claim	855	2 (1)	99.6 (0.2)
Re-evaluated	745	18 (4)	91 (1)
DEVICE			
lon chamber + planar	91	54 (14)	79 (5)
lon chamber	325	25 (6)	90 (2)
Film	71	33 (16)	82 (5)
MapCheck	322	14 (5)	94 (2)
MODE			
Absolute	295	3 (3)	94 (1)
Relative	97	21 (9)	91 (3)

Ion chamber versus average TLD

• P = 0.006, $R^2 = 0.02$

Planar detector versus average film

Just 3%/3mm for any planar device

Is this a criteria problem?

- AUC all devices equal (poor)
- No good criteria that has good sensitivity and specificity
- 50% sensitivity
 - 2% ion chamber, 97% of pixels passing (3%/3mm)

Conclusions

- In-house IMRT QA does not well predict external phantom audit results
 - Phantom failure rate ~20%
 - In house IMRT QA failure rate ~3%
 - Dong IJROBP 2003, Fenoglietto Radiat Oncol 2011
- True for all devices and criteria
 - Some criteria better than others
- We need to better understand our QA processes
 - Why don't these two tests for QA agree better?
 - What QA device/techniques are superior

Lessons from Proton phantoms

• What do you mean:

"Proton equivalent"?

In photons

- Lots of plastics behave well
 - Fall on the HU:ED curve

HU/ RSP Data Collection

- Based on Moyers et. Al, "Ion Stopping Powers and CT Numbers"
- CT imaging of materials at 120 kVp, 120 mAs, 48cm diameter FOV, slice thickness of 5mm
- HU measurement using Eclipse
- Proton RSP measured at 160 MeV and 250 MeV $_{RSLP} = \frac{R_{80,w} R_{80,m}}{t_m}$

Stopping Power vs. HU Curve

Not so good.....

Stopping Power vs. HU Curve

Summary

- Be careful with proton beams!
- Good luck finding materials that behave like tissues!

Conclusions

- Phantoms are useful for credentialing
- Phantoms are also a unique tool to evaluate many different aspects of radiation therapy

Thank You!

 This work was supported by grants CA010953, CA081647

	Your Amazon.com Toda	Valentine's Day Gifts 🔧 ^				
Shop by Department 👻	Search Industrial & Scie	tific - Go Hello. Sign in Your Account -	Try Prime +	Cart-	Wish List →	
Industrial & Scientific	Lab Test & Measuremen	Safety Janitorial Food Service Education Material Handling Materials Metalworking Fasteners Filtration				-
By Images SI Inc. ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★			In	Quantity: 1 \$39.95 + \$10.49 ship stock. Usually ships wit days. Sold by Images S	ping hin 4 to 5 SI Inc.	
Con	tents Activity	List Price: \$49.95 Price: \$39.95 You Save: \$10.00 (20%)	(Add to Cart or an in to turn on 1-Click Add to Wish List	ordering.	

In stock. Usually ships within 4 to 5 days. Ships from and sold by Images SI Inc..

More Lab & Safety Supplies Find a radiation detector, geiger counter plus other safety supplies along with lab equipment, and more in our Industrial Supplies store.

Click for larger image and other views

Contents

Uranium Ore

aution Radioactive Mar

View and share related images

Image is representative of the product family.

Specifications for this item

Number of Items 1

Material Type Metal

UPC 410000210390

Brand Name Images SI Inc.

EAN 0410000210390

More Buying Choices

Have one to sell? Sell on Amazon Share 🖂 🗗 💓 👰