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RPC 

• Radiological Physics Center is scientific agency 

that supports NCI-run clinical trials 

– Verify that institutions are delivering the dose they 

believe they are delivering 

• Have been doing this since 1968 

• Monitor >1800 RT facilities 

– Many tools – mailable output checks, site visits, 

phantoms, patient chart dose recalculations 

 

• Phantoms! 



The RPC Phantom Family 

10 prostate phantoms (IMRT) 

13 lung phantoms 

8 liver insert 
25 H&N 

phantoms (IMRT) 
16 SRS phantoms  

8 Spine 

phantoms 



RPC activities - Phantoms 
• Mail a phantom to an institution 

– Includes target(s) and dosimeters 

• The institution treats it like a patient 

– Sim, plan, setup, treat 

• The RPC analyses the results and 

compares the measured dose distribution 

to the institution’s TPS calculation 

• Large history of irradiations  

– >3000 phantoms 

 



Phantom Audits 

• Can an institution deliver the dose they 

intended 

• Pass       participation in clinical trials 

• What else have we learned? 
– Lung phantom: Heterogeneous calculations 

– H&N phantom: phantom versus IMRT QA 

– Proton phantoms: material stopping power 



Lessons from the Lung phantom 

• Different algorithms show different levels 

of dose agreement in the RPC lung 

phantom. 



Heterogeneous conditions: 

• Lung phantom 

– 2 TLD in center of lung target (3 cm x 5 cm) 

– Film in 3 planes 

• Homogeneous results within 1% (Ibbott) 



Initial work: low quality algorithms 

• Cyberknife pencil beam algorithm 

TLD 

Calculated Measured 
% 

Difference Dose (cGy) % SD 
Avg. Dose 

(cGy) 
% SD 

PTV Sup. 610.3 1.1% 533.6 0.5% -13.4% 

PTV Inf. 592.9 2.4% 517.3 0.8% -13.6% 

Avg. 

PTV 
601.6 2.1% 525.4 1.8% -13.5% 

Cord 42.1 2.2% 27.8 1.3% -40.9% 

Heart 63.6 5.6% 45.7 2.3% -32.8% 



Thoracic dose calculations 
• Homogeneous and low quality heterogeneous dose 

calculations (e.g., Batho-corrected pencil beam) are 

highly inaccurate and inconsistent. 

• These algorithms are not allowed in NCI-sponsored 

clinical trials involving the lung 

• AAPM minimum practice statement  

– TG-244: Commissioning and QA of TPS in EBRT 

 

 

 

• Convolution-Superposition/AAA algorithms are generally 

considered accurate 



Irradiations 
• In this study: 

– 304 irradiations 

– 6 MV irradiations 

– IMRT or 3D CRT 

– Moving or static 

– Various algorithms 

– All used heterogeneity 

 corrections 

• Evaluate 

– TLD dose (vs TPS) 

– Planar agreement 

• DTA or gamma 



TLD Measurement vs TPS calculation 
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TLD Dose Findings 

• Measured doses 
systematically lower than 
calculated doses for            
C/S AAA algorithms 
(p<0.0001) 

• No significant difference 
between C/S AAA 
algorithms 

• For C/S AAA algorithms: 

• No significant difference between IMRT (mean=0.963) and 3D CRT 
(mean=0.964) irradiations (p=0.7) 

• No significant difference between moving (mean=0.961) and static 
(mean=0.964) irradiations (p=0.5) 

• No significant trend versus irradiation date (p=0.2) 

 



Systematic calculation discrepancy 
• Overestimation of dose with C/S AAA (3.7%) 

• Dose to center of target 

• Other studies showing similar results 
– Monte Carlo lung plans hotter than C/S 

– Larger 100% isodose volume 

 

 



What does this mean? 

• Issue for dose calculation accuracy  

(AAPM TG-65 goal: 1-2%) 

 

• Potentially issue for dose reporting/prescribing 

 



Update to these results 

• Another 1.5 years of phantom results 

• Acuros (n=13) 

– Unique radiation transport algorithm 

• More Monte Carlo (n=57) 
– Multiplan (n=34) 

– BrainLab (n=12) 

– Monaco (n=10) 

• More C/S (n=457) 



Updated results 

Monte Carlo results are not consistent…… 



Update summary 

• More variability than expected between 

different algorithms 

• Acuros different than MC or C/S 

• Monte Carlo results not uniformly 

consistent 

• Why so much difference??? 



What to do? 

• Note that we see some inconsistencies 

• Understand where this arises in clinical 

practice, and how much difference there is 

 

• Pressure manufacturers to improve dose 

calculation accuracy 



Lessons from the H&N phantom 

• How do phantom results compare to IMRT 

QA results? 

 

• Does IMRT QA predict RPC phantom 

results? 



IMRT QA 

• IMRT QA comes in many flavours 

– Detectors, detector geometries, delivery 

geometry, tolerances, analysis techniques, 

ROI selected, analysis software and on and 

on….. 

• All flavours are used. None are repeated 

 

• At the end of the day, they should evaluate 

a treatment plan 

– Are you delivering what you think you are? 



IMRT QA 

• We collected institutional IMRT QA results 

for H&N phantom plans 

– Compare them with phantom results 

• Abstracted 1005 H&N phantom results 

and corresponding IMRT QA results 

• Excluded 

– No/unintelligible IMRT QA results 

– Adjusted MU between IMRT QA and phantom 

 



Methods 

• 855 records  

– 122 failed phantom irradiation 

• First sorting: 

– Considered to pass IMRT QA unless stated 

otherwise 

• Truth tables to calculate sensitivity and 

specificity of IMRT QA relative to RPC 

phantom 

 



Results 

• Institution declared “failed” IMRT QA 

 

 

 

 

 

• Sensitivity: 2 (±1)% (Failing plan identified as failing) 

• Specificity: 99.6 (±0.2)% (Passing plan identified as passing) 

Fail Pass

Fail 2 3

Pass 120 730

RPC

Inst QA



Results 
• Re-evaluate institution IMRT QA 

– >3% absolute dose disagreement 

– <90% of pixels passing at least 3%/3mm 

 

 

 

 

 

• Sensitivity: 18(±4)% (Failing plan identified as failing) 

• Specificity: 91(±1)% (Passing plan identified as passing) 

Fail Pass

Fail 19 57

Pass 84 585

RPC

Inst QA



Summary of all Results 

  
Number 

Sensitivity in %  

(st. dev.) 

Specificity in %  

(st. dev.) 

ALL RESULTS       

     Institution claim 855 2  (1) 99.6  (0.2) 

     Re-evaluated 745 18  (4) 91  (1) 

DEVICE       

     Ion chamber + planar 91 54  (14) 79  (5) 

     Ion chamber 325 25  (6) 90  (2) 

     Film 71 33  (16) 82  (5) 

     MapCheck 322 14  (5) 94  (2) 

MODE       

     Absolute 295 3  (3) 94  (1) 

     Relative 97 21  (9) 91  (3) 



Ion chamber versus average TLD 

• P = 0.006, R2 = 0.02 



Planar detector versus average film 

• Just 3%/3mm for any planar device 

• P = 0.002, R2 = 0.05 



Is this a criteria problem? 

• AUC – all devices equal (poor) 

• No good criteria that has good sensitivity and 

specificity 

• 50% sensitivity 

– 2% ion chamber, 97% of pixels passing (3%/3mm) 



Conclusions 

• In-house IMRT QA does not well predict external 

phantom audit results 

– Phantom failure rate ~20% 

– In house IMRT QA failure rate ~3% 
• Dong IJROBP 2003, Fenoglietto Radiat Oncol 2011 

• True for all devices and criteria 

– Some criteria better than others 

• We need to better understand our QA processes 

– Why don’t these two tests for QA agree better? 

– What QA device/techniques are superior 



Lessons from Proton phantoms 

• What do you mean: 

 

     “Proton equivalent”? 



In photons 

• Lots of plastics behave well 

– Fall on the HU:ED curve 

 



HU/ RSP Data Collection 

• Based on Moyers et. Al, “Ion Stopping 

Powers and CT Numbers” 

• CT imaging of materials at 120 kVp, 120 

mAs, 48cm diameter FOV, slice thickness 

of 5mm 

• HU measurement using Eclipse 

• Proton RSP measured at 160 MeV and 

250 MeV 

 



Stopping Power vs. HU Curve 



Not so good….. 



Stopping Power vs. HU Curve 



Summary 

• Be careful with proton beams! 

• Good luck finding materials that behave 

like tissues! 



Conclusions 

• Phantoms are useful for credentialing 

• Phantoms are also a unique tool to 

evaluate many different aspects of 

radiation therapy 
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