Patient Dose Tracking for Imaging Studies

David E. Hintenlang, Ph.D., DABR University of Florida

Conflict of Interest Statement

No affiliation or financial interests in any of the commercial products or enterprises discussed as part of this presentation.

Introduction to Patient Dose Tracking (PDT)

Why Patient Dose Tracking (PDT)? What Dose Metrics are useful/attainable? How are dose metrics obtained?

- Where are dose metrics recorded?
- When is PDT required?
- What tools are available to assist with PDT?

Overview

- Motivation
- Dose Metrics
- PDT "Requirements"
 - Regulatory
 - Accreditation
- Strategies & Tools for PDT
- Examples of Commercial Products

Why track Patient Dose?

- Regulatory requirements
- Accreditation requirements
- Liability and Public Relations
- Research
- Quality Assurance
- Awareness & Patient Safety
- Individual Patient cumulative dose record
- PQI

ENGINEERS for LIFE UNIVERSITY of FLOORIDA I. Crayton Print Family Department of Department of

Patient Dose Metrics

- Dose
 - Organ Dose (Gy) /Equivalent Dose (Sv)
 - Effective Dose (Sv)
- Dose Surrogates
 - Cumulative Exposure Time (min)
 - Entrance Air Kerma (Gy)
 - Dose Area Product (Gy- cm²)
 - Cumulative Dose (Gy)
 - Peak Skin Dose (Gy)
 - CTDI (Gy)
 - Dose Length Product (Gy-cm)
 - Size Specific Dose Estimate (Gy)

Crayton Pruitt Family Department of Biomedical Engineering

Individual Patient Dose Measurement

- Measurement of Patient Dose Difficult
 - Dosimeters
 - Computational Predictions
- Dose Surrogates Easier to obtain
 - Easier measurement
 - Difficult interpretation for radiation detriment
 - Not uniformly defined or applied
- Depend on biological endpoint

The dosimetry parameter that best represents the stochastic radiation detriment to a patient is

23%	a.	Cumulative Dose
17%	b.	CTDI _{vol}
13%	С.	Dose Area Product
30%	d.	Dose Length Product
17%	e.	Effective Dose

Answer: e. Effective Dose

Ref: Miller, et.al. Quality Improvement Guidelines for Recording Patient Radiation Dose in the Medical Record, J. Vasc. Interv. Radiology, 15:423-429, 2004.

Requirements & Recommendations

Federal

- 21CFR 803: Reporting of skin damage to fluoroscopic equipment manufacturers
- FDA Recommendations for Interventional Procedures
- States
 - CA, TX, OH.....?
 - Fluoro and CT
- Other
 - Individual Health Care Systems
 - Veterans Health Administration & NIH
 - American College of Radiology , Dose Index Registry
 - The Joint Commission

ENGINEERS for LIFE

Sample Recommendations for Dose Metrics

- California: Effective Dose, Skin Dose
- Texas:
 - Reference Levels
 - Fluoro: Air kerma, or other estimates of skin dose
 - CT: CTDI_{vol}, DLP
- VHA:
 - Cumulative fluoro time
 - Cumulative air kerma or skin dose
 - Dose-area-product

Recorded PDT Metrics likely dictated by regulatory and accreditation bodies

Requirements : California

• Senate Bill 1237

- Report to DHS scans that are repeated or wrong body part resulting in:
 - Effective Dose > 0.05 Sv
 - Dose > 0.5 Sv to any organ or tissue
 - Shallow dose to skin > 0.5 Sv
- Some exceptions
- Implementation: Reference levels for CTDIvol and DLP
- Exam and patient specific
 - i.e. Cumulative CTDIvol of 650 mGy for any → expected to exceed skin reporting threshold of 500 mSv

Crayton Pruitt Family epartment of lomedical Engineering

Requirements : Texas

- 25 TAC 289.227 Effective May 1, 2013
- Radiation Protocol Committee for
 - Fluoroscopically-Guided Interventional Procedures
 - CT Systems
 - Methods to monitor radiation output
 - Establish Reference Levels for radiation output
 - Actions for when reference level is exceeded
 - Do not need to determine patient dose for each procedure

ENGINEERS for LIFE

J. Crayton Pruitt Family Department of Biomedical Engineering

Requirements: Texas

- Fluoroscopy
 - Make and maintain a record of radiation output information so the radiation dose to the skin may be estimated....
 - To include:
 - Cumulative air kerma or dose area product (if available on system) or
 - Fluoro mode, Cumulative exposure time & number of recorded exposures.
- CT
 - Make and maintain a record of radiation output information so the radiation dose to the skin may be estimated....
 - CTDIvol and DLP (if system capable of calculating and displaying) or

ENGINEERS for LIFE AAPM TG 111 Recommendations

J. Crayton Pruitt Family Department of Biomedical Engineering

Proposed: Ohio 3701: 1-66-07 (3/3/2014)

- Fluoro: Interventional, cardiac cath pediatric, pregnant patients
- Record cumulative air kerma or DAP for each exam

or

• Mode of operation, Cumulative fluoro exposure time, and number of radiographs

The State of Texas requires monitoring of patient doses for

Answer: b. Fluoroscopy and CT

Ref: 25 Texas Adminstrative Code §289.227 "Use of Radiation Machines in the Healing Arts" May 2013.

Proposed: The Joint Commission

- Prepublication Standards: Diagnostic Imaging Services Requirements ; Provision of Care, Treatment, and Services (PC) – Effective July 1, 2014
- PC.01.02.15 ; C5
- For ...diagnostic CT....documents in the patient's medical record the radiation dose (CTDIvol or DLP) on every study produced during a CT examination.
- PC.01.02.15 ; C6
- For... diagnostic CT.. The interpretive report of a diagnostic CT study includes the CTDIvol or DLP radation dose. The Dose is either recorded in the patient's interpretive report or included on the protocol page.

- Only applicable for systems calculating and displaying radiation doses.
- Not applicable to systems for rad therapy treatment planning or dental cone beam CT

Proposed: The Joint Commission

- Prepublication Standards: Diagnostic Imaging Services Requirements ; Performance Improvement (PI) – Effective July 1, 2014
- PI.02.01.01; A6
- The hospital compiles and analyzes data on patient CT radiation doses and compares it with external benchmarks, when such benchmarks are available.
 - i.e. collection of data where pre-identified radiation dose limits are exceeded.

Observations on proposed TJC standards

 Draft requirement for electronic transmission of protocol identifying radiation dose to PACS was removed from the standard.

 Expect a parallel set of Fluoroscopy standards in Phase 2 – 2015 Implementation.

Effective July 1, 2014, The Joint Commission accreditation will require documentation of each patient's radiation dose (CTDI_{vol} or DLP)

10%	a.	in the patient medical record.
33%	b.	by electronic transmission to the EMR.
20%	C.	by electronic transmission to the hospital's electronic PACS.
20%	d.	for diagnostic CT and dental cone beam CT systems.
17%	e.	by a diagnostic medical physicist

Answer: a. in the patient medical record.

Ref: TJC Prepublication Standard PC.01.02.15

Generation& Recording of Dose Metrics

- Measured vs Predicted
 - DAP: measured
 - Cumulative Air Kerma/Skin Dose: Measured
 - CTDI : Predicted
 - DLP: Predicted
- Recording Methods
 - Manual
 - DICOM Radiation Dose Structure Report RDSR

Or other electronic transfer formats

Optical Character Recognition (OCR) from images

). Crayton Pruitt Femily Department of Biomedical Engineering

Formats & Imaging Modalities

- DICOM Radiation Dose Structured Report
 - RDSR
- DICOM Modality Performed Procedure Step
 - MPPS
- IHE profile Radiation Exposure Monitoring

Digital Modalities these are typically provided for:

- CT
- Fluoro:
 - Interventional Radiography
 - Cardio-Vascular
 - Mobile C-Arms
- Radiography
- Mammography

Options for Legacy Equipment

- Manual entry / Logs
- Image Headers
- OCR from Images

Dose Tracking Applications

- Cumulative dose tracking throughout a health system (multiple modalities and procedures).
- Analysis to optimize image quality and minimize patient risk
- Compliance and Reporting:
 - Internal
 - Patients
 - Governing & regulatory authorities

UF UNIVERSITY of **FLORIDA**

Crayton Pruitt Family Department of Siomedical Engineering

Patient Dose Tracking

- Threshold dose notifications
- Cumulative dose history prior to exams

Trend Analysis

- Dose comparisons as a function of
 - Modality
 - Protocol
 - Sites
 - Patient populations
 - Time
 - Etc.

Compliance Reporting

• Periodic Summary Reports

ENVINEERS for LIFE

Customized Diagnostic Reference Levels

ta Sister							
Lotal Dady Description Standard St	uty Description						
folies w							
Italy Description	Marc 0.47 (mDx anr ²)	Ma. DAF	Max. DAF (mily am ²)	Renter of Index	Kat Balles (19430) +	The 10 Host Used Local Study Descriptions	
мпнао	72009 40	330.00	1103405.00		25.04	Price 1175.	
0401	30523.46	21000.00	149400.00		24.51	B GTTAN	
NICULARE	1001000 00	w01.00	1100700.00		11.44		
eo-Leb Procedure	141212.25	1755.00	4732199-04			11 Augus K 1975	
remi	34080.75	0120-00	\$7948.00			C0805+CE	
COROS + GRAFT	GT21.75	198.00	300401.00		424		
R Anglo Dribslamins	183046-00	57550.00	418730.00			MUR. LUS	
enno suot	-E1.52	180.00	050.00				
conos + PCI	20146.57	9450.00	100540.00			Nor-lab Pr., 18775	
R (J) Tabe Change	1008.00	100.00	1070.00		1.00	CEMON IN 11 N	
the TOT antes						NAME VIA NO. 11 OF N	

Communication with other systems

- PACS
- RIS
- HIS
- EMR
- ACR DIR

Dose tracking software systems can integrate dose information from each of the following methods <u>except</u>

40%	а.	DICOM MPPS
17%	b.	DICOM R <mark>DSR</mark>
10%	с.	HE Profile REM
20%	d.	NEMA OS-3- <mark>2012</mark>
13%	e.	OCR

Answer: d. NEMA OS 3-2012

Ref: Manufacturer Websites listed at end of presentation

Commercial Solutions for Dose Tracking

- Broad range of capabilities
 - Basic information recording
 - Advanced analysis and interactive notification
- Multi-modality
- Transmission of dose information from imaging device or PACS
- Integration with PACS, RIS, & EMR
- Analysis and Reporting
 ENGINEERS for LIFE

Commercial PDT Tools

• Basic

Custom

Dedicated System

Basic Dose Tracking

- Integrated with an existing system
- Example: Meditech
 - Integrated information system
 - Many aspects of health care
 - Includes a RIS and interfaces with PACS
 - RDSR's flow into Meditech
 - Subsequently recorded in patient record

Custom Applications

- Designed to meet specific needs
- Example: Primordial
 - Customized applications in radiology
 - Provide wide variety of Radiology services
 - Departmental workflow, communications, QC,...
 - Integration of PACS, RIS, and EMR

Radiation Dose Monitoring – Customizable Application

ENGINEERS for LIFE

). Crayton Pruitt Family Department of Biomedical Engineering

Dedicated Dose Tracking Software

Integrate dose metrics from imaging systems or PACS typical formats: DICOM RDSR preferred Integrate with PACS, RIS, EMR **Analysis capabilities Selection of Reference Doses** Automated notification

Examples of Dedicated Dose Tracking Systems

- DoseMonitor (PACS Health)
- DoseTrack (Sectra)
- DoseWatch (GE)
- RADAR360 (MedPhys360)
- Radimetrics/eXposure(Bayer)

Common Features

- DICOM or IHE standards for interfaces
- Single server web-based applications
- Interface with multiple modalities
 - CT, Mammo, DR, Interventional vascular, Cardiac angiography, mobile C-arms
- HL7 Interface with PACS
- Customization for Ref. dose alerts
- Provide Near-time dose feedback
- Upload to ACR Dose Index Registry
- SSDE Prediction Based on patient EMR data

ENGINEERS for LIFE

J. Crayton Pruitt Family Department of Biomedical Engineering

DOSEMONITOR®

by PHS Technologies Group

- 2012
- Single server, browser based design
- Direct integration with RIS, EMR, ACR DIR
- Supports CT, Mammo, DR, IV, CA

Features and Capabilities:

- Patient historical dose repository
- Customizable alerts and notifications
- Dose data exportable to dictation
- Reporting sort by
 - Technologist
 - Procedure
 - Physician

8000 studies over 6 months

Single Health System Multi-Facility Comparison

CT Head WO Contrast Average CTDI

RADAR360 by MedPhys360

- Radiation Dose Analyzing & Reporting
- Queries PACS for CT data
- CTDI & DLP Analyis
- Protocol Management
- Pediatric Techniques Evaluation
- Customizable designed to be affordable

- TA ILLENG JUT EILE

Crayton Pruitt Family Department of Biomedical Engineering

DoseTrack by Sectra

- Cloud based dose monitoring
- Supports CT, Mammo, DR, IV, CA
- Alerts when thresholds exceeded
 - i.e. User defined Dose Reference Levels
- Fluoro cumulative dose maps
- Analysis:
 - Patient specific
 - Dose profiles for imaging systems

ENgineers for LIC omparison of individual performance

). Crayton Pruit: Family Department of Biomedical Engineering

Q Search		💌 lan Eeb Mar				2000 2010	2010	6
C Search		Jan Feb Mar	Apr May Jun Jul Aug	Sep Oct Nov De	c <u>2008</u> ;	2009 2010 2	2011 2012	
Current Selection	on							Galeview
Year 🛛 🥥 🗟 🔻	r 🧕 2011	Scorecard	Histogram	Trend	Scatter	Age Distribution	Table (Study)	Table (Series)
					Trend			
Select by C	hart Select by	parameter Studies			i cha		Studies Q3 DLPtot	mGy*cm
Patient							🗕 Median DLF	o _{tot} - 1 200
Patient ID	• 0	7000						- 1 100
Patient's name	• 0	7000	010 mGy*cm					1,100
Sex	• 0		oro may ch					1 000
Age	• 0							1000
Date of Birth	• 0	6000						- 900
Study								- 300
Requested Proc ID	• 0							- 800
Accession Number	• 0	5000					-	000
ExamCodeGroup	• 0							- 700
Exam Code	• 0							700
Exam Description	• 0	4000					-	- 600
Prioritising Phys.	• 0							000
Referring Phys.	• 0							- 500
Performing Phys.	• 0	3000						- 500
Phantom	• 0							400
MPPS Status	• 0							- 400
Month	• 0	2000						
Radiation Alert	• 0	2000						- 300
Location								- 200
Hospital	• 0	1000						- 200
	• 0	1000						400
Room	• 0							- 100
Equipment		0						0
	• 0	Janú	2011 Feb 2011 Mar 2011	Apr 2011 May 2011	Jun 2011 Jul 2011	Aug 2011 Sep 2011	Oct 2011 Nov 2011	Dec 2011
Model Name	• 0							👚 Month
Category	- 0							
Modality Type	- 0	Tube Voltage	Peak (kV) Expos	ure (mAs)	Number of Exposures	Exposure Time	(ms) Datas	set Completeness
Station Name	- 0		Bin = 10	Bin = 10	Bir	n = 10	Bin = 5000000 Exa	m DLP CTDIV
Filter Material	• 0	kΥ	mAs		#	ms	Lou	
Validation Status	• 0	140	100000		*		100%	100% 100% 67% 67%
<	Clear Selection	> 100	50000		50	100000	33%	33% 33%
Selecting 65059 of Last update: 2012	f 224667 CT studies 2-07-06 16:42:08	100	2000 50000	10 200 5000	0 20 5001	0000 30	1000 30000 80	% 85% ^{0%}

Biomedical Engineering

Radimetrics

Radimetrics (eXposure) by Bayer

- Stand alone system- in house server
- Integrates with PACS & RIS
- Patient Score Card

 Cumulative dose tracking
- CT Dosimetry Prediction
 - Monte Carlo simulation engine
 - Organ doses
 - Effective dose
 - Protocol evaluation

ENGINEERS for LIFE

J. Crayton Prilitt Family Department of Biomedical Environment

UF FLORIDA

J. Crayton Pruitt Famil Department of Biomedical Engineerin

Radimetrics

- Protocol Management
 - Supports multiple scanners
 - Tracks & authorizes revisions
 - Set uniform dose reference levels (CTDI, DLP, E, Organ Dose)
- Reporting
 - Customizable dashboard
 - Select items of items of interest
 - Pateint Scorecard integrates with most EMR systems
- Productivity
 - Monitoring & Analysis of equipment utilization
 - Integrates with Contrast dose management tools

DoseWatch – GE HealthCare

- Multi-modality
- Not vendor specific
- Centralized system- web-based interface
- Integrates with RIS and EMR
- Tracking and statistical analysis
 - Identifies dose outliers
 - Email notification

DoseWatch

- Reporting
 - By device, operator or protocol
 - User defined thresholds
 - Email notifications
- Trend analysis
 - Baselines for procedures
 - Benchmark for improvements/optimization

DoseWatch

- Legacy systems
 - Extracts dose info from OCR on dose report images
- CT : Size Specific Dose Estimate (SSDE)
 - Per AAPM TG 204
 - Based on scout images
- Fluoroscopy: Incidence Map

SSDE

Effectiveness & Advances

- Demonstrated reduction in patient doses
 Even without extensive analysis
- Seamlessly satisfy recording requirements
- Management of doses, equipment, training
- Endless PQI possibilities
- Development of Real-Time Dose Monitoring
 - Fluoroscopy
 - Real-time integration & body mapping of fields using RDSR

Real-Time Skin Dose Mappng

• RDSR – Radiation Dose Structured Report

• Collaboration with UF, UF Health Jacksonville and Columbia University Medical Center in NYC

•PI : Wesley Bolch, Ph.D.

ENGINEERS for LIFE

The cumulative dose incidence map provides

13%	а.	A planar represention of the surface air kerma distribution
20%	b.	A summary of the DAP per study
23%	C.	A visualization of cumulative organ doses through the body
13%	d.	The variation of a facilities cumulative delivered dose over time
30%	e.	A correlation of the number of studies performed with cumulative dose
ENGINEERS for LIFE		

J. Crayton Pruitt Family Department of Biomedical Engineering Answer: a. a planar representation of the surface air kerma distribution.

Ref: Manufacturer Websites listed at end of presentation

Summary

- Evolving Industry
 - Expect increasing numbers & advanced capabilities
- Products are readily customized to users needs
- Patient population or individual based applications
- Valuable QA tools
- Support regulatory focus & compliance
- Dose metrics not uniform across modality
 - Unavailable for legacy equipment
 - Integration of patient dose ?
- Integrate with other systems (PACS, EMR, RIS, HIS...)
- Difficult to track across health care systems

References

- 25 Texas Adminstrative Code §289.227 "Use of Radiation Machines in the Healing Arts" May 2013.
- VHA Handbook 1105.04, "Fluoroscopic Safety", Department of Veterans Affairs, Veterans Health Administration, Washington, DC 20420, July 2012.
- Miller, et.al. Quality Improvement Guidelines for Recording Patient Radiation Dose in the Medical Record, J. Vasc. Interv. Radiology, 15:423-429, 2004.
- Amis, et. al. American College of Radiology White Paper on Radiation Dose in Medicine, J. Am. Coll. Radiol. 4: 272-284, 2007.
- Hospitals & Health Networks, Radiation dose management: A Patient Safety priority, Gatefold, 2013.
- The Joint Commission: Prepublication Standards: Diagnostic Imaging Services Requirements; Provision of Care, Treatment, and Services, Dec 2013.
- 2014 Ambulatory Care, Critical Access Hospital, and Hospital Comprehensive Accreditation Manual March 2014.

ENGINEERS for LIFE

J. Crayton Pruitt Family Department of Biomedical Engineering

Commercial Product Web-Sites and Descriptions

- http://www.dosemonitor.com/
- http://www.radimetrics.com/
- http://www.sectra.com/medical/
- <u>http://www.primordialdesign.com/</u>
- <u>http://www3.gehealthcare.com/en/Products/</u>
 <u>Dose Management/DoseWatch</u>
- <u>http://medphys360.com</u>

