AAPM Spring Clinical Meeting
Advanced Mammography Applications
March 16, 2014

John Lewin, M.D.
Diversified Radiology of Colorado
Denver, Colorado

Disclosures
• Research Contract from Hologic
• Hologic Scientific Advisory Board
• Philips Women’s Healthcare Medical Advisory Board

The use of iodinated contrast agent with digital mammography has not been evaluated by the FDA and is an “off-label” use.

Off-label Use
The use of iodinated contrast agent with digital mammography has not been evaluated by the FDA and is an “off-label” use.

Non-FDA approved devices
Some devices discussed in this presentation have not been approved by the FDA for clinical use in the United States.

Learning Objectives
• Understand the basic principles of digital breast tomosynthesis
• Understand the clinical strengths and limitations of digital breast tomosynthesis
• Understand the basic principles of contrast enhanced digital mammography
• Understand the clinical strengths and limitations of contrast enhanced digital mammography

Part I - Tomosynthesis

Primer/Refresher: Breast Tomosynthesis
• Mammography is only about 70% sensitive
• One reason cancers are not seen on mammography is that they are obscured by surrounding dense tissue
• Tomosynthesis is a way to separate the cancer from the surrounding dense tissue
Multiple (10-25) digital images taken at different angles are combined to give an image at a single plane.

- Total sweep is typically 15–50 degrees.
- Each image is acquired at low dose so total ~ standard mammogram.

Design Issues

- **Arc size**
 - Wider arc → better z resolution
 - But... increased dose
- **# of images**
 - More images → fewer artifacts
 - But... longer acquisition time, more dose or more noise
- **Stationary vs moving detector**
- **Stop and shoot vs continuous imaging**

Current Tomo Systems - design

- **Hologic** – 15° arc / 15 images / 3.7s
- **GE** – 25° arc / 9 images / 7s
- **Siemens** – 50° arc / 25 images / 25s
- **IMS Giotto** – 40° arc / 13 images / 12s
- **Planmed** – 30° arc / 15 images / 20s
- **Philips** – 11° arc / 21 images / 3-10s

Source: Sechopoulos. A review of breast tomosynthesis. Medical Physics 2013, 40(1)

Current Tomo Systems - Regulatory

- **Hologic** – FDA approved
- **GE** – commercial use outside U.S.
- **Siemens** – commercial use outside U.S.
- **IMS Giotto** – commercial use outside U.S.
- **Planmed** – research only
- **Philips** – research only

Example: Hologic Selenia Dimensions

- Digital Mammography and Tomosynthesis System
- 15 degree tomosynthesis sweep, 15 images, ~5 second tomosynthesis acquisition
- Continuous x-ray tube movement
- 24 x 29 cm detector
- 2D and 3D Imaging under same compression
 - 2D (mammo), 3D (tomo) or Combo modes
Literature Review

Hologic FDA Study
- Multi-reader study with enriched screening case set
- 7% increase in accuracy (area under ROC curve)
- 15-20% increase in sensitivity for invasive cancers

Oslo Tomosynthesis Trial
- 12,631 screening exams in combo mode (2D mammography + tomosynthesis)
- 4 readers – 2 for each arm (mammo alone, mammo+tomo)
- RESULTS:
 - Cancer Detection Rate: 6.1/1000 vs. 8.0/1000
 - 27% increase in cancer detection with combo (p=.001)
 - 40% increase for invasive cancers (p=.001)
 - False Positive Rate (recall rate) before arbitration: 8.0% vs. 6.1%
 - 15% decrease in FP rate with combo mode (p<.001)
 - PPV after arbitration similar for mammography and combo, however
 - 29.1% vs 28.5% (p=.72)

Italian Tomosynthesis Screening Trial
Screening with Tomosynthesis OR Standard Mammography (STORM)
- 7292 screening exams in combo mode (2D mammography + tomosynthesis)
- RESULTS:
 - 39 cancers detected on 2D reading; 59 cancers using 2D + tomo
 - Cancer Detection Rate: 5.3/1000 vs. 8.1/1000
 - False Positive Rate: 4.4% vs 3.5%
 - 17.2% decrease in recalls with 2D + tomo

Cases

Case 1: Invasive Ductal Carcinoma - Mammography
Case 1: Mammo vs Tomo (CC)

Case 1: Mammo vs Tomo (spot CC)

Case 2: Invasive Lobular Carcinoma
Decreased Recalls from Overlap with Tomo

Mamm: callback

Tomo: no callback

Calcifications - DCIS

Tomo only lesion - ? U/S correlate

Path: Radial Scar

Marker placed under U/S

Inp vacuum bx new marker placed

Tomo-only Finding

Upright vacuum-assisted biopsy using tomo is available (and would be good for cases like these)

My experience with screening tomo:

- Year 1 (prevalence year):
 - 3 tomo-only cancers in ~ 2200 exams
 - Better than expected - stopped counting after that
 - All were low grade
 - Also - lots of radial scars
- Year 2 (i.e., year after pt’s 1st tomo):
 - All new cancers have been high grade
 - Some have been tomo-only
My experience with diagnostic tomo:

- All spot compression views are now done in combo mode
- Much more reassuring than standard spots
- Replaces straight lateral view, off-angle views, rolled views, etc.
- Several cases where cancers seemed to spot out on 2D but shown on tomo to be true masses

Radiation and Tomosynthesis

- The radiation dose from the Hologic tomo is about 10% higher than a comparable Hologic 2D image
 - So combo mode is more than double a 2D mammogram
- Key tradeoffs:
 - # of images
 - More images = fewer artifacts
 - More images not as dose efficient (more noise/dose)
 - Tomo acquisitions are basically dose-limited

2D Synthetic View

- Uses the tomosynthesis data to create a view that simulates a 2D mammogram
 - Allows one to see calcification distributions that might be difficult to perceive on tomo slices
- Basically a type of MIP image
- Can be made to simulate a 2D image, or improve on it
- Idea is to eliminate requirement for 2D mammo to be done with tomo (Hologic)
Example (courtesy Hologic): Tomosynthesis Reconstruction Slices (showing one slice)

Example (courtesy Hologic): Synthetic 2D

Example (courtesy Hologic): Spiculated mass lesion side-by-side

Oslo Trial Synthetic View Study

- 24,901 screening exams (continuation of above trial)
- Combo mode; double reading
- Compared 2D + tomo to tomo with syn. view
- Results (cancer detection rate):
 - A little complicated because syn. view algorithm changed in middle of study
 - Before change: 2D + tomo > tomo with syn. View
 - After change: no difference

Breaking News

- AMA approved 3 CPT codes for tomosynthesis last week (3/5/14).
 - Doesn’t mean we will actually get paid extra for doing tomo, however (but it is a first step)

Tomosynthesis - summary

- Currently in routine clinical use
- Shown in clinical settings to give both improved sensitivity and improved specificity compared to 2D mammography
- Can be used as an addition to 2D or with a synthetic view
- Additional systems in FDA approval process
- Payment and use of CAD are issues
Part II - Contrast-Enhanced Digital Mammography

CEDM - Outline
- History
- Technique
- Literature Review / Cases
- Clinical Status

Mammography
- Inexpensive, fast
- But...
 - Only about 75% sensitive
 - ~60% in dense breasts; 90% in fatty breasts

MRI
- Very high sensitivity
- But...
 - Expensive
 - Inconvenient – long, noisy, claustrophobic
 - Limited specificity

Question: What makes MRI so good at showing cancers?
Answer: The contrast agent
- Despite 3-D capability and excellent contrast sensitivity, non-contrast MRI has not been shown to work for cancer detection

To get the best of both mammography and MRI...

Contrast-Enhanced Digital Mammography (CEDM)
- Hypothesis
 - By using intravenous iodinated contrast with digital mammography, occult cancers can be made visible
 - Rationale: Breast cancers have been shown to enhance on MRI and CT

CEDM - Hurdles
- Contrast resolution of digital mammography is far lower than CT and MRI
- Breast compression inhibits blood flow
CEDM – Subtraction Techniques

• Temporal Subtraction: post-contrast - pre-contrast
 • Dual-Energy Subtraction: high-energy - k*low-energy

Temporal Subtraction - Limitations

• Breast must be immobilized during contrast administration
 – Limited to one view of one breast
 • Bilateral exam requires 2nd injection
 – Only light compression can be used
 • Increases motion (misregistration), scatter

Dual-Energy Subtraction - Principle

Dual-Energy Subtraction

• Images are acquired at two X-ray energies after contrast injection
 – Iodine absorbs high-energy beam better than low energy beam
 – Breast tissue absorbs low-energy beam better than high-energy beam
 – In practice, energies straddle the k-edge of iodine
 – Final image is weighted logarithmic subtraction

Dual-Energy Subtraction

• Advantages
 – Image both breasts in multiple projections
 – Can image with full compression
 – Images obtained only seconds apart
 • Minimal misregistration
 • Improved morphology information
• Disadvantage
 – Weighted subtraction is imperfect (magnitude of effect depends on beam quality)
Example: Filtered Spectra on a Mo/Rh Mammo Unit

Original
Dual Energy Subtraction (no contrast agent)
Dual Energy Subtraction (with contrast agent)

Early Dual Energy Papers
 - 26 subjects (13 cancers)
 - All cancers enhanced
 - 25 lesions (14 cancers)
 - All cancers enhanced
 - 120, 110 subjects (80, 148 cancers)
 - CEDM > mammo and mammo+U/S by ROC
- Schmitzberger, et al (Radiology 2011)
 - 80 subjects (9 cancers) with photon counting tomosynthesis

Two-View Film Mammogram
(wire on excisional biopsy scar)

Sagittal Post-contrast MRI
Post-Contrast Dual-Energy Digital Subtraction Mammography

CEDM vs MRI: Recent Literature

- Fallenberg, et al. European Radiology 2013; epub 9/19
 - Bilateral CEDM, MRI, mammo
 - Note: Average rad dose of CEDM sl. < mammo (1.72 vs 1.75 mGy)
 - 80 subjects with new CA at 1 site
 - Single reader of CEDM, clinical read of MRI
 - CEDM > MRI sensitivity for index lesion (100% vs. 97%)
 - 80/80 vs 78/80
 - CEDM correlated best with path in terms of size of lesion
 - MRI and mammo both underestimated size

CEDM vs MRI: Recent Literature (cont.)

 - Bilateral CEDM vs MRI
 - 52 subjects with new cancer
 - CEDM = MRI sensitivity for index lesion (96%)
 - 50/52
 - MRI > CEDM in detection rate for additional foci
 - 22/25 (88%) vs 14/25 (56%)
 - CEDM had fewer false positives than MRI
 - 2 vs 13

Additional CEDM Papers of Note

Clinical Papers:

Physics Papers:

CEDM - Current Clinical Status

- June 2010 – CEDM product introduced in Europe
- October 2011 – CEDM product receives U.S. FDA 510k approval
- Currently – being incorporated into routine practice, esp. outside U.S.
- At least one additional company has attained 510k approval for a CEDM product
What is next?

✓ Compare CEDM to MRI
• Optimize the technique
 – Beam energies (target, filter, kVp)
 – Image processing
 – ???
• Combine CEDM with tomosynthesis

CEDM/CET Research Study

• CEDM and CE Tomosynthesis vs MRI
 – Subjects with newly diagnosed cancers
• CEDM and CET performed in single compression
 – Prototype device allowing dual energy combo-mode imaging (2D and tomo)
 – < 1 sec between LE and HE images
 – Tomo with 22 source images (alt HE and LE)
 – Affected breast only

CEDM / CET Case 1: 65 yo with invasive ductal CA

Case 1 – CC view

Lessons...

• Benign masses that light up on MRI also light up on CEDM (e.g. FAs, LNs)
• Sometimes you see things better on CEDM and other times on CET
Case 2:
53 yo woman with IDCA

Screening mammo:
? architectural distortion
"very low suspicion"
U/S: mass

Case 2: Mammograms

Case 2: MRI

Case 2 - CEDM

Pre-contrast DEl sub
CEDM - MLO
CEDM - CC

Case 2: Low Energy Tomo

Morphology on LE tomosynthesis greatly increases the probability of malignancy
Case 2: Lesson

• Low energy tomo images can add useful information on morphology – changing the assessment of the lesion

CEDM vs MRI

• CEDM
 – Lower cost
 – Easier on patient (noise, claustrophobia)
 – Faster
 – More specific (esp. with tomo)
 – Single exam for high risk screening (shows calcs)
 – Upright stereo biopsy easier than MR biopsy

• MRI
 – Includes all of breast and chest wall
 – Signal to noise for enhancement very good / more sensitive
 – Gad safer than iodinated contrast
 – No radiation

Where will CEDM/CET fit in?

• Possible indications:
 – Cancer Staging
 – High Risk Screening
 – Moderate Risk Screening

• Must compete against MRI, nuc med, unenhanced tomo
 – Cheaper, easier and faster than MRI
 – Faster than Nucs – no systemic radiation
 – Shows lesions that tomo misses

Summary

• CEDM has gone from research to clinical use
 – Cancers reliably enhance with this technique
 – Morphology helps with specificity

• Potential to reduce costs by decreasing need for MRI
• Very early in life cycle → expect improvements in image quality and interpretation
 – Early results indicate MRI is more sensitive, less specific

• Addition of tomo has potential to further improve results
• Continued research is needed…