Feasibility of 3D Printed Patient-specific Phantoms for IMRT QA and Other Dosimetric Special Procedures

Eric Ehler, PhD Assistant Professor Department of Radiation Oncology

ehler 046@umn.edu

UNIVERSITY OF MINNESOTA Driven to Discover™

What is 3D Printing?

- 3D Printing is also called Additive Manufacturing
 - Object is created by depositing successive layers of a material
 - Deposition is in the design/shape of the object
 - Object design/shape is in the form of 3D computer model
- 3D Printer is a specialized robot
 - You give it 3D computer model and build material
 - Robot builds your object
- Printing Technologies
 - Many printing technologies exist
 - Many materials available
 - Plastic, Metal, Polymers
 - Organic material

What are advantages?

- 3D Printing is like a swiss army knife
 - Configure about anything
 - NASA will develop for space \rightarrow reduce parts/tools taken to space*
- Prototyping costs lowered by factor of 10-100
 - Need only 1 of something
 - To print head replica cost \$50
- Fast fabrication process
 - Have a 3D model? start printing
- Less waste than traditional methods i.e. CNC, subtractive mfg.
- 3D Printing is inferior when you need 10,000 of same thing
 - 3D printing is good for making the mold

* Fox News 9/30/2013

Modalities

- Fused Deposition Modelling
 - Material is melted
 - Then extruded out a nozzle \rightarrow a layer is deposited
 - Material cools and hardens
 - Next layer is deposited top layer cools to bottom \rightarrow fused!

3D Printers - available

- Fused Deposition Modelling
 - \$100s to \$10,000s for the printer
 - Material Costs start at \$30 per kg (\$15 per lb)

- Stereolithography
 - \$7,000 to \$600,000 for the printer
 - Material costs can be MUCH greater

Great, What do I need

- All 3D printers need a 3D Model
 - Traditionally created with Computer Aided Drafting (CAD)
 - Xbox Kinect (http://www.instructables.com/id/3D-Scan-and-duplicate-yourself-or-anything/?ALLSTEPS)
 - CT, MRI, NM + software

Great, What do I need

- All 3D printers need a 3D Model
 - Traditionally created with Computer Aided Drafting (CAD)
 - Xbox Kinect (http://www.instructables.com/id/3D-Scan-and-duplicate-yourself-or-anything/?ALLSTEPS)
 - CT, MRI, NM + software

 Hint: CT scan and contouring software do not have enough resolution for good 3D model

Great, What do I need

 Hint: CT scan and contouring software do not have enough resolution for good 3D model

I have a 3D model, now what?

- 3D Model is converted to machine instructions
 - Robots are not yet self-aware
 - The process is call slicing
 - Converts 3D models into slice by slice 2D shapes
 - Most printers are provided with slicing software

I have a 3D model, now what?

- 3D Model is converted to machine instructions
 - The process is call slicing
- Can set machine parameters here
 - Resolution and speed
 - Material used
 - FDM
 - set extruder temperature
 - set platform temperature

				?	>
I want to:	🔵 Make It N	ow	• Expor	t to a File	
Export For:	The Replicato	or 2X			-
Material:	ABS				•
Resolution:	Low (Fast	er) * 🗸	Raft (New	and Impr	oved)
	Standard	✓	Supports		
	O High (Slov	ver)			
▼ Advan	ed Options		1	Extruder:	Righ
Profile:	Low				•
Slicer:	MakerBot Slice	er			
	Quality	Temperatur	e Spee	ed	
	Extruders:	230 °C			\$
		✓ Heat the	e Build Plate	9	
	Build Plate:	135 °C			\$
	Use Defaults	5	c	Create Pro	file
Cancel				Exp	ort!

- Most famous from U of Michigan
 - Create splints for collapsed airway of newborns
 - Two Reported Cases
 - Bioresorbable polyester
 - Polycaprolactone used to fill skull after surgery
 - Use CT scan for 3D model

Hollister SJ, Green GE, Reddit IAmA, 3/18/2014 Zopf DA, Hollister SJ, et al. NEJM 2013; 368:2043-45

Zopf DA, Hollister SJ, et al. NEJM 2013; 368:2043-45

- Most famous from U of Michigan
 - Create splints for collapsed airway of newborns
 - Polycaprolactone used to fill skull after surgery
- FDA clearance is an issue
 - 3D printing will be an issue for FDA
 - "the FDA has been extremely helpful"
 - "There are very few FDA approved materials for 3D-printing."

Hollister SJ, Green GE, Reddit IAmA, 3/18/2014 Zopf DA, Hollister SJ, et al. NEJM 2013; 368:2043-45

- Custom facial implants
 - Facial reconstruction after motorcycle accident
 - Titanium implants based on contralateral bones
 - Better symmetry
 - CT scan used to create 3D model
- Swansea UK
 - No idea of regulatory issues

Pioneering 3D printing reshapes patient's face in Wales www.bbc.co.uk, 3/12/2014

Stephen Power was photographed before the operation, left, and afterwards, right

Two views of Stephen Power's skull after the operation with temporary staples

A civil model and implante moduled using 2D as

Pioneering 3D printing reshapes patient's face in Wales <u>www.bbc.co.uk</u>, 3/12/2014

Radiation Oncology?

- Where does 3D Printing fit in Radiation Oncology?
 - Bolus is a custom fit apparatus
 - Already use thermoplastic bolus
 - Currently use universal phantoms for IMRT/IMPT QA
 - Human body is not a universal shape
 - Can we use custom form phantoms for measurements?

3D Printing for Bolus

Images courtesy of Ted Fischer

3D printed IMRT phantoms

- IMRT/IMPT QA is becoming ever more complex
- Companies specialize in phantoms
 - Recent paper found the software resulted in different pass rates*
 - How do you relate the QA result to patient treatment?
 - Can reconstruct dose on patient
 - Black box approach
 - "trust" results
 - Software defaults to give highest passing rate

*Hussein M, et al. Radiotherapy and Oncology. 2013

Current Detectors

IMRT Homogeneous Phantom

<u>3D</u>

IMRT Thorax IMRT Pelvic 3D Phantom Phantom

IMRT Head & Neck Phantom

IMRT Head And **IMRT** Phantom Torso Freeport Accessories Phantom

Anthropomorphic Head Phantom Skull Phantom

- Current Detectors
 - Have advantages/disadvantages
 - Ion chambers or diodes or film or EPID
 - Some devices have detectors at 3.3 cm depth
 - That is greater than the depth of parotid glands
 - Few monthly/annual checks of surface/buildup dose
- Evaluation largely based on Gamma Tolerance
 - Has been shown to be a bad predictor of clinical significance
 - Tolerance was established in early days of IMRT QA
- IGRT accuracy
 - Does your couch have rough or loose points?
 - How does IGRT accuracy affect your IMRT quality?

Hypothesis

- Is it practical/feasible to print the patient geometry?
 - Use RANDO phantom as "Patient"
 - Allows for dosimetry "in-vivo"
 - Avoids HIPAA
 - Follow full patient workflow

- Workflow
 - CT scan patient (CT sim)
 - Convert CT to 3D model
 - Slicer 3 ITK from MIT/MGH
 - Insert detector points in phantom
 - Blender (open source 3D graphics software)
 - AutoCAD
 - Meshlab
 - Google Sketchup
 - Slice in Makerware
 - Whole head used \$50 of ABS plastic
 - Print patient phantom
 - Fill phantom with M3 Wax

Film Plane

- Test of tissue equivalence
 - How close does dose in phantom match dose in "patient"
 - Parallel opposed Head & Neck fields
 - measure dose in "patient" and in phantom

12 of 17 within 3%

14 of 17 within 5%

UNIVERSITY OF MINNESOTA Driven to Discover™

12 of 17 within 3%

14 of 17 within 5%

12 of 17 within 3%

14 of 17 within 5%

12 of 17 within 3%

14 of 17 within 5%

- Perform QA on Printed phantom
 - Compare to cylindrical and planar IMRT QA measurement
 - Dose reconstruction algorithm with cylindrical data
 - Cylindrical measurements \rightarrow reconstruct dose on patient
 - Software allows recalculation of DVH

- Cylindrical and Planar QA
 - Passing Rates (Default Settings)

	3 mm / 3%	3%	5%
Cylindrical	99.7%	94.4%	98.0%
Planar 1	99.1%	88.1%	97.0%
Planar 2	99.3%	89.3%	94.2%
Planar 3	100.0%	90.1%	96.5%
Planar 4	98.7%	88.9%	94.9%
Planar 5	100.0%	84.4%	94.8%
Planar 6	99.7%	87.8%	94.0%
Planar 7	99.6%	89.3%	96.3%
Planar 8	98.6%	88.1%	93.2%
Planar 9	99.6%	90.4%	95.6%

Cylindrical and Planar QA

Passing Rates

	3 mm / 3%	3%	5%
Cylindrical	95.9%	69.2%	80.4%
Planar 1	92.4%	61.3%	69.7%
Planar 2	93.5%	68.7%	74.6%
Planar 3	96.2%	67.2%	71.8%
Planar 4	94.4%	65.1%	72.4%
Planar 5	96.5%	69.4%	75.4%
Planar 6	95.5%	66.6%	74.4%
Planar 7	93.7%	63.4%	75.0%
Planar 8	89.1%	63.3%	69.4%
Planar 9	93.4%	63.5%	70.4%

Cylindrical and Planar QA

	3 mm / 3%	3%	5%
Cylindrical	95.9%	69.2%	80.4%

Dose Reconstruction Results

	3 mm / 3%	3%	5%
Superior Axial	95.3%	74.5%	90.3%
Inferior Axial	96.7%	92.8%	99.5%
Coronal	95.7%	89.0%	96.1%
Sagittal	96.1%	90.8%	97.9%

3D Printed Phantom Results

	3 mm / 3%	3%	5%
Superior Axial	87.0%	63.2%	80.9%
Inferior Axial	91.6%	67.0%	82.8%
Coronal	91.8%	73.5%	85.7%
Sagittal	94.6%	75.0%	90.9%

15

10

- Dose Reconstruction assumes perfect beam model
 - No beam model is perfect!
 - Isn't that why we do the IMRT QA in the first place?
 - In this case, observe disagreement at superficial depth
 - Detector depth 3.3 cm
 - 3D printed phantom show effect of couch, head frame, etc.
- 3D printed phantom \rightarrow end-to-end test
 - Similar workflow as patient
 - CT, Dose, position, IGRT, IMRT

Work flow

UNIVERSITY OF MINNESOTA Driven to Discover[™]

INT GIRRO VARIAN MEDICAL SYSTEMS Jum MLC: Clinac® EX with MLC-120

Conclusions

- 3D Printed IMRT QA Phantom is an End-to-End Test
 - IMRT Commissioning quality measurements on per-patient basis
 - Include couch, frame, etc. transmission
 - Include IGRT accuracy in dosimetric assessment
 - Test much more links in the treatment chain
 - Not just test MLC / Beam Quality
 - Clinically Relevant Dosimetric Results
 - Not software driven but dosimeter driven Quality Assurance
 - Tailor measurements as needed for specific case
 - Cost:
 - \$1000s for printer
 - \$50 for plastic
 - \$150 for M3 wax (reusable)

That is 3D Printing in IMRT QA Are you pumped up for 3D Printing?

