Innovations in medical imaging: research in academics and industry

Norbert J. Pelc, Sc.D.

Departments of Bioengineering and Radiology

Stanford University

Acknowledgements

Brian Hargreaves, Stanford University Jiang Hsieh, GE Healthcare Kim Butts Pauly, Stanford University Robert Herfkens, Stanford University

Research support: GE Healthcare Philips Healthcare Samsung Electronics

Outline

Impact of medical imaging (medical, economic)

Progress through innovation in diagnostic imaging

Vignettes during my time in industry

Vignettes from academia

Conclusions

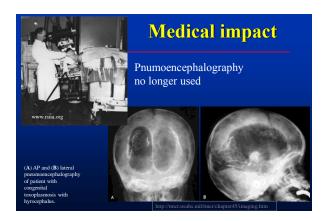
Economic impact

annual worldwide market	2014	
СТ	\$4B	
MRI	\$5.5B	
PET & SPECT	\$9.5B	
Ultrasound	\$6B	
TOTAL	\$27B	

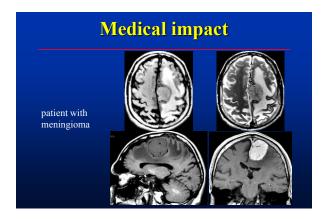
Sources: BBC Research, MarketsandMarkets, Medical News Today, Transparency Market Research

Economic impact

annual worldwide market	2014	1974
CT	\$4B	~0
MRI	\$5.5B	~0
PET & SPECT	\$9.5B	~0
Ultrasound	\$6B	~0
TOTAL	\$27B	~0


 $Sources: BBC\ Research, Markets and Markets, Medical\ News\ Today,\ Transparency\ Market\ Research$

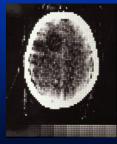
Economic impact


- ~75M CT and ~35M MRI procedures/yr in USA
- Medical imaging is ~\$100B per year (US)
- Lots of people employed
- · Many patients are impacted

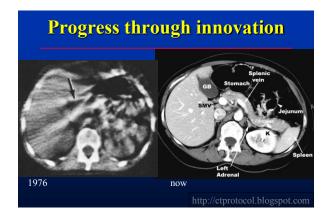
Sources: Healthday, Organization for Economic Co-operation and Development

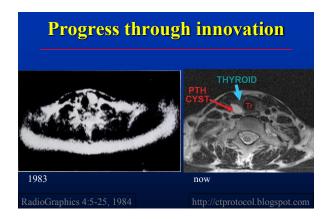
EXHIBIT 3		
Moon Despense And Dealds	of Of Dhugleland Batlage Of Innovetland	2004

			Percent	of respondents	s choosing
Rank	Innovation	Mean score*	Most	Not most or least	Loast
1	MRI and CT scanning	0.878	75.6%	24.4%	0.0%
2	ACE inhibitors	0.767	54.2	44.9	0.9
3	Balloon angioplasty	0.758	53.8	44.0	2.2
4	Statins	0.736	48.0	51.1	0.9
5	Mammography	0.733	47.6	51.6	0.9
6	CABG	0.693	40.4	57.8	1.8
7	Proton pump inhibitors and H2 blockers	0.687	40.0	57.3	2.7
8	SSRIs and recent non-SSRI antidepressants	0.678	39.6	56.4	4.0
9	Cataract extraction and lens implant	0.651	38.2	53.8	8.0
10	Hip and knee replacement	0.649	31.6	66.7	1.8
11	Ultrasonography	0.647	31.1	67.1	1.8
12	Gastrointestinal endoscopy	0.624	28.0	68.9	3.1
13	Inhaled steroids for asthma	0.591	23.6	71.1	5.3
14	Laparoscopic surgery	0.558	20.9	69.8	9.3
15	NSAIDs and Cox-2 inhibitors	0.531	14.2	77.8	8.0
16	Cardiac enzymes	0.498	7.1	85.3	7.6
17	Fluoroquinolones	0.487	6.7	84.0	9.3
18	Recent hypoglycemic agents	0.478	12.9	69.8	17.3
19	HIV testing and treatment	0.444	15.6	57.8	26.7
20	Tamoxifen	0.440	3.1	81.8	15.1
21	PSA testing	0.438	12.9	61.8	25.3
22	Longacting and parenteral opioids	0.376	8.4	58.2	33.3
23	H. Pylori testing and treatment	0.351	1.8	66.7	31.6
24	Bone densitometry	0.344	4.0	60.9	35.1
25	Third-generation cephalosporins	0.329	1.8	62.2	36.0
26	Calcium channel blockers	0.291	1.8	54.7	43.6
27	IV-conscious sedation	0.289	1.8	54.2	44.0
28	Sildenafil (Viagra)	0.256	0.9	49.3	49.8
29	Nonsedating antihistamines	0.231	1.3	43.6	55.1
30	Bone marrow transplant	0.182	1.3	33.8	64.9
	All 30 innovations	0.520	22.3	59.6	18.2


How do innovations have impact?

- Publications and dissemination can alter research, and clinical use if changes don't require system mods or approvals
- Broad impact of technological changes requires commercialization


Progress through innovation



Progress through innovation Fig. 2. Assistic neurons with positive plan and C scane. A. The plan study (left) above displacement of the board with the left of the last of the displacement of the board with the last of the displacement of the board with the last of the displacement of the board with the last of the displacement of the board with the last of the displacement of the last of the la

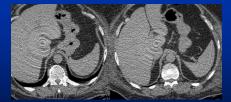
Progress through innovation

<u>Completely new product:</u> commercialization is often by a new company

<u>Improvement to existing product:</u> commercialization is usually through existing company

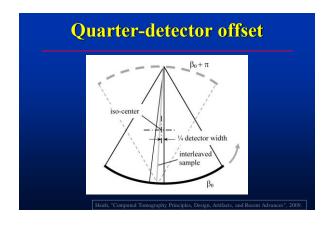
Outline

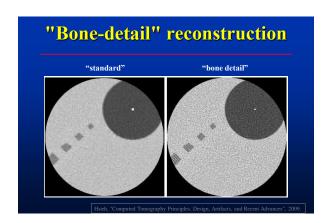
Impact of medical imaging

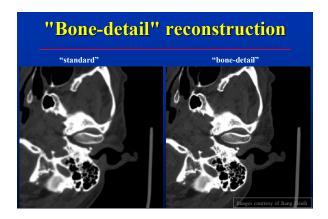

Progress through innovation in diagnostic imaging

Vignettes during my time in industry

Vignettes from academia

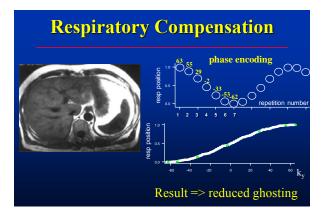

Conclusions

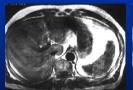

Improved calibration methods



new methods improved reliability and image quality and reduced manufacturing and service cost

http://emedicine.medscane.com/article/383412-overvie

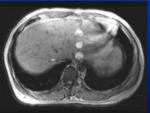



Observations

- Problems were important to the business
- There was an in-house expert and advocate (me)
- Relatively easy implementation
- Incorporated into the product quickly
- Innovations helped the customers and the company

Respiration artifacts in MRI phase encoding phase encoding repetition number conventional Acquisition Result => ghosting

Respiration artifacts in MRI



Respiratory Compensation

Observations

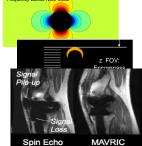
- Feature was important to the business
- There was an in-house expert and advocate (me)
- Complicated implementation: hardware, operator interface, scan software, pulse sequences, reconstruction, operator interface
- Incorporated into the product

Cardiac pulsation artifacts

Zhu J, Gullapalli RP. "AAPM/RSNA Physics Tutorial for Resider MR Artifacts, Safety, and Quality Control." RadioGraphics 2006;

- Potential solution: phase encoding order based on cardiac cycle
- Relatively simple adaptation of resp comp feature already in the product
- · Stanford clinicians liked it
- Not incorporated in the product

Observations


- Moderately easy implementation
- Not incorporated into the product
- Lack of perceived market impact?
- No in-house expert/advocate?
- Needed resources were required elsewhere?

MRI near metal		
Four common metal ar	tifacts are shown	
Signal Loss	Failed Fat Suppression	
Distortion / Displacement	Hyperintense signal "pile-up"	
Often occur together, from multiple mechanisms		
	courtesy of Brian Hargeaves, PhD	

SEMAC

MAVRIC

<u>Multiacquisition Variable-resonance Image</u> Combination

Developed independently by a scientist at GE (Kevin Koch)

Different combination of techniques, not slice selective

Koch, et al. MRM 2009

courtesy of Brian Hargeaves. PhD

Stanford University Radiology

MAVRIC-SL

Kevin Koch and Brian Hargreaves knew and understood each other's techniques. Wide and open communications

SEMAC and MAVRIC have different strengths and weaknesses. One is superior in some cases; the other is others

A "hybrid of the two was created and implemented in GE product (MAVRIC-SL) Methods published and licensed. Similar techniques implemented by other vendors

ourtesy of Brian Hargeaves, PhD

Stanford University Radiology

Observations

- Moderately complicated implementation
- Feature was important to customers
- There was an in-house expert and advocate
- Incorporated into the product
- Communication between the academic and industry groups, before and after commercialization decision, was critically important

Summary

- Medical imaging innovations have had a huge impact, clinically and economically. Medical physicists contributed greatly
- Impact of innovations needs dissemination.
- Commercialization makes innovations widely available to the medical community and public

STIMM MAGNET
Summary

- Physicists within companies play a great role
 - innovators
 - experts and advocates for innovations
 - internal innovations (including their own)
 - external advances
- Physicists in the community and academia are closer to the clinician and clinical needs

Dissemination decisions

- Commercialization decisions are complex
 - Assessment of commercial opportunity
 - Needed resources? Are they available?
- Within companies: internal matter. Physicists should be engaged.

-	
•	
	_
-	_

Dissemination decisions mmercialization/dissemination of acade

- Commercialization/dissemination of academic innovations can be by several routes:
 - Place it in the public domain
 - Patent and license. Expectations must be realistic.
 - Starting a new company may be appropriate for completely new product
 - Working with existing company may be more effective for evolutionary advances

Academic - industry partnership

- "Evolutionary" advances accumulate to huge impact
- Collaboration and communication between academia and industry is essential
- New compliance policies and expectations of both sides can be a barrier
- Don't throw out the baby with the bathwater

Thank You
