MRI-guided Radiation Therapy

Radiation Oncology UNIVERSITY OF TORONTO

T. Stanescu, PhD, MCCPM

þ

Medical Physicist, RMP, Princess Margaret Cancer Centre Assistant Professor, Radiation Oncology, University of Toronto Affiliated Faculty, Guided Therapeutics, Techna Institute, UHN

Introduction

MRI-guided radiotherapy

MRI

- best for RTP target delineation, tissue characterization
- excellent soft tissue contrast compared to x-ray imaging (CT/CBCT)
- fast imaging techniques
- multiplanar acquisition

CBCT

MRI

Introduction

MRI-guided radiotherapy

In-room MRI for setup verification | quantify organ motion

- Applications:
- liver, pancreas, kidney, prostate, paraspinal, etc.
- SBRT, dose escalation, ↑ target control
- adaptive RT planning (ART)

	MRIgRT		
MRI guided RT systems			
/ challenge I	Radiofrequency (RF) interference b/w linac & MR		
/ challenge <mark>2</mark>			
/ challenge <mark>3</mark>	Dose deposition effects in MR's magnetic field		
/ challenge 4	Skin dose effects in MR's magnetic field		

	MRIgRT
MR-linac systems	/ challenge <mark>2</mark>
2. Magnetic field mutual interact	ion: MR magnet \rightarrow Linac
B0 fringe field of MR scanner rea Linac performance affected Be	ching the Linac structure eam output = f(fringe B-field)
	Linac waveguide
MR	

	WRIGKT
MRIgRT	systems
/ challenge 1	RF interference
	Relocate linac main RF sources in adjacent rooms Enclose linac head or MR in a Faraday cage
/ challenge 2	Magnetic field mutual interaction: MR magnet & Linac
	Passive & active magnetic shielding Physical separation
/ challenge 3	Dosimetry in MR's magnetic field
	Effects ↑ when magnetic field ↑ Monte Carlo dose computations
/ challenge 4	Skin dose effects in MR's magnetic field
	System configuration
	Treatment planning strategies

Adapted from G. Fallone

Viewray system

- MR scanner: 0.35 T, split-ring bore
- 3 x Co-60 teletherapy heads & MLCs
- DR: 550 cGy/min
- Rotating gantry assembly
- Room: 5.8 x 7.5 x 2.9 (m)
- Installation through maze | He vent
- FDA Clearance

Semin Radiat Oncol 24:196-19

Viewray system

- First patients treated Jan. 2014
- Siteman Cancer Center & Wash U
 Ongoing: breast, bladder, lung, pancreas, stomach, palliative

MRgRT Facility

Brachytherapy Suite Brachytherapy Console

MR gRT Facility MR Safety Zone I •Freely accessible Zone II •Access to other zones

•Screening area Zone III •Magnetic field present •Access restricted •Supervised by MR staff •Control for ferromagnetic objects Zone IV

Zone IV Magnet room Very strong fields

ACR Guidance Document on MR Safe Practices JMRI 37:501-530 (2013)

Application Sites for MRguided External Beam

Site	Support	Туре
SBRT Liver	++++	IG
SBRT Paraspinal Mets	++++	IG
RT for Cancer of the Cervix	++++	IG/A/R
RT for Partial Breast Irradiation	+++	IG/A
RT for Head and Neck (Oro)	++	IG/A
RT Prostate	+	IG/B
IG – Online Image Gu	idance: A – Ad	aptive:

IG – Online Image Guidance; A – Adaptive; R – Response Assessment; B- Boost

D. Jaffray

Imaging Division MRI, therapy & oncology

MR-guided Radiotherapy

Jan Lagendijk, Bas Raaymakers, Marco van Vulpen

Courtesy of J. Lagendijk

Vision

- Develop Centre of Image Guided Oncological Interventions
- Improving local cancer therapy and making this therapy • non-invasive

System specs - Stereotactic MRI accelerator (MRL): MR scanner: 1.5T (Philips) Linac: 6X (Elekta)

- Gantry assembly: rotation in both directions - 10 rpm (slip ring) \mid 0.1 $^{\circ}$ accuracy

- MLC field size 24 x 56 cm2 - 7 mm leaves at iso - 1 mm spherical volume as target at iso

- Simultaneous irradiation and MR imaging

System specs - Stereotactic MRI accelerator (MRL): MR scanner: 1.5T (Philips) Linac: 6X (Elekta)

- Gantry assembly: rotation in both directions - 10 rpm (slip ring) | 0.1° accuracy

- MLC field size 24 x 56 cm2 - 7 mm leaves at iso

- 1 mm spherical volume as target at iso - Simultaneous irradiation and MR imaging

Adapted from J. Lagendijk

Adapted from J. Lagendijk

Building and installing the MRI linac at the UMCU

Radiotherapy UMC Utrecht goes MRI

- Tumour characterization
- MRI simulation: delineation
- MRI guidance
 - MRI treatment guidance external beam
 - MRI guided brachytherapy
 - MRI guided HIFU
 - MRI guided protons
 - MRI guided radioembolization
- MRI treatment response assessment

EQUIPMENT STATUS

Courtesy of P. Keall

Courtesy of P. Keall

Item	Status		
Bunker	Crookes construction: ~14x12x5m3, completed		
Magnet	Agilent: 1T split bore, actively shielded with low field in linac region, delivery ~11/14,		
Linac and MLC	Varian Linatron and Millennium MLC, delivered, installation ongoing		
Spectrometer	Siemens, delivery ~12/14		
Gradient coil system	Tesla, delivery ~11/14		
RF system	Magnetica, delivery ~11/14		

KEY SCIENTIFIC ACHIEVEMENTS

message	Source
The electron gun can be modified to operate in magnetic fields	Constantin Med Phys 2011, 2014
Real-time image guidance via template matching is feasible	Bjerre Phys Med Biol 2013
The MLC will not inhibit MRI image quality; if sufficiently separated	Kolling Med Phys 2013
Real-time MLC tracking is used for patient treatments	Keall Med Phys 2014
Skin dose is really high inline; but can be reduced	Oborn, Med Phys 2014

Courtesy of P. Keall

Acknowledgements

Princess Margaret Cancer Centre

- D. Jaffray M. Carlone, S. Breen, C. Menard, M. Milosevic, H. Alasti, M. Islam, S. Foxcróft, R. Dahdal, A. Simenov, J. Stewart, L. Dawson, T. Purdie, M. Gospodarowicz, A. Rink, K. Chan, K. Wang, F. Panici, W. Xia

IMRIS

J. Sarafa, J. Winters, M. Dahan, D. Graves, L. Petropoulus, B. Guyot

Varian

M. Sweitzer, K. Kennedy, B. Saunders, B. Tonks, M. Harris, J. Harrold, J. Marle, R. Barnard, F. Tosi, K. Shet

Slides J. Lagendijk, G. Fallone, P. Keall

Radiation Oncology UNIVERSITY OF TORONTO TECHNA CUHN Margaret

MR Guided Radiation Therapy

Technology Review & Innovation – T. Stanescu

Commissioning & QA/QC - J. Balter

RT Planning - T. Nyholm

RT Guidance - J. Lagendijk