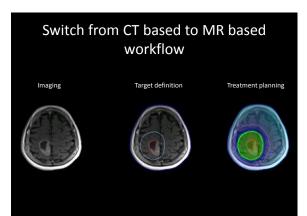
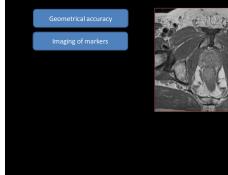
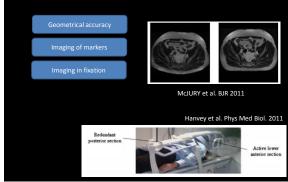


MRI for treatment planning Presentation outline


- MR/CT based workflow What is the problem?
- MR only workflow
 Issues and possibilities
- Treatment planning systems
 What is needed before we can make full benefit of MR?
- Image quality and distortions

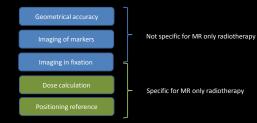


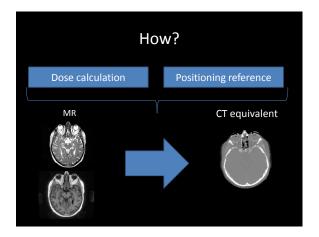
2

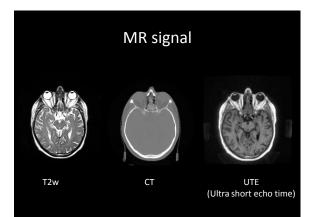

Which issues needs to be addressed

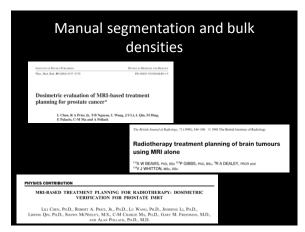
Which issues needs to be addressed

Which issues needs to be addressed


Which issues needs to be addressed


Which issues needs to be addressed




Which issues needs to be adressed

_

Manual segmentation and bulk densities

ser Iur Advantage

- High dosimetric accuracy
- Intuitive method
- Disadvantage
- Very time demanding
- Geometrical accuracy?

Difference in calculated dose

Jonsson et al. Radiation Oncology 2010, 5:62 http://www.ro-journal.com/content/5/1/62

Registration based An Atlas-Based Electron Density Mapping Method for Magnetic Resonance Imaging (MRI)-Alone Traduet Based Methods Resonance Rusging (MRI)-Alone Traduet Based Russing Russing (MRI)-Alone Traduet Based Russing Ru

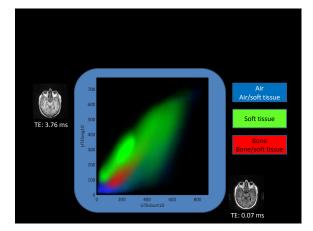
Mathias Hofmans^{1–3}, Florian Steinke², Verma Scheel¹, Guillaume Charpiat², Jason Fanşahar², Philip Aschoff⁴, Michael Bealy³, Bershard Schöllepf⁴, and Bernd J. Fichler¹

Registration based

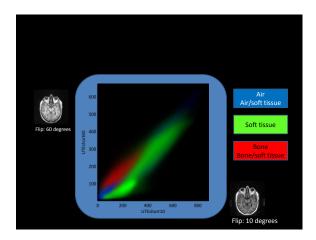
MRI Atlas New MRI Result

Advantage

- High dosimetric accuracy
- Automatic
- Disadvantage
- Geometrical accuracy?


Int J RadiatOncol Biol Phys 2012

Automatic segmentation and bulk densities

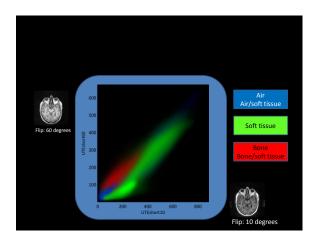

Investigation of a method for generating synthetic CT models from MRI scans of the head and neck for radiation therapy

800 Air 700 Air/soft tissue 600 Soft tissue 90 Soft tissue 91 Bone	
700 Air/soft tissue 600 Soft tissue	
700 Air/soft tissue 600 Soft tissue	
600 Soft tissue	
遊 400 Bone Bone	
300 BONE/SOLLISSUE	a
200	
0 -1000 0 1000 2000 HU	

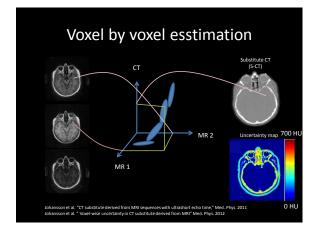
Automatic segmentation and bulk densities

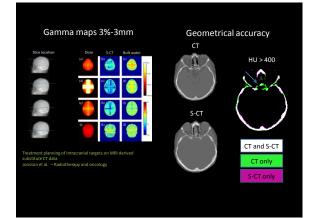
Advantage

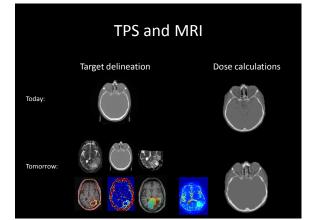
- High dosimetric accuracy
- High geometrical accuracy Disadvantage
- Not intuitive Need for QC
- Not shown to work below the H&N region


els from MRI scans of the head and neck for tion therapy

Direct voxel-vise conversion


CT substitute derived from MRI sequences with ultrashort echo time Adam Johansson,⁴⁰ Mikael Karlsson, and Tulve Nyholm Disputing of Balatian Science. Used Vinjerutin. Used


Treatment planning of intracranial targets on MRI derived substitute CT data



Comparison CT/substitute-CT

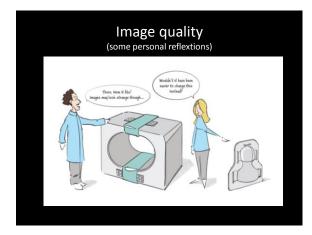
Advantage

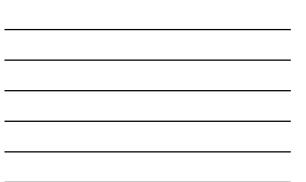
- High dosimetric accuracy
- High geometrical accuracy Disadvantage
- Not intuitive Need for Q0
- Not shown to work below H&N region

Image quality

(some personal reflextions)

The definition of the target volume and OAR's are the most important steps of the radiotherapy workflow


Point with MR: Image quality \rightarrow better possiblities to define relevant volumes


So we should do what we can to maintain the image quality..

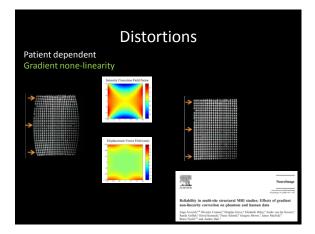
This could mean that RT needs to adopt to MR instead of the other way around

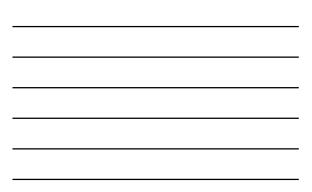
Distortions

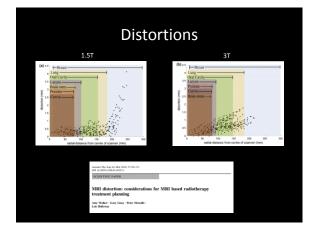
Patient dependent Gradient none-linearity Target defintion Dose calculation (MR only workflow) Registrations (CT/MR workflow)

Distortions

Patient dependent **Chemical Shift**


Susceptibility Gradient none-linearity


isue 3, July 2014, Pages 160-168 oging in Radiation Co Magnetic Resonance Imaging Acquisition Techniques for Radiotherapy Planning Gary P. Liney, PRD¹¹ & B, Marina A, Moerland, PRD¹


Seminars in Radiation Oncology

"Patient-related image distortions can be reduced by applying relatively strong slice selection and frequency-encoding gradients, for example, by setting the pixel bandwidth at twice the water-fat shift, all patient-related distortions are expected to be smaller than the pixel size."

440 Hz at 1.5 T 880 Hz at 3 T

