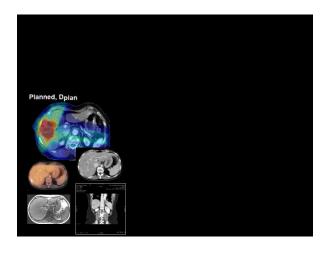
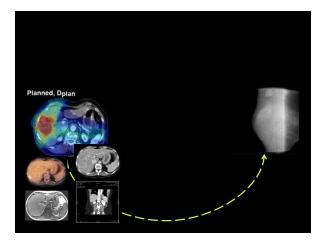
Introduction and Overview of DIR Methods and Challenges

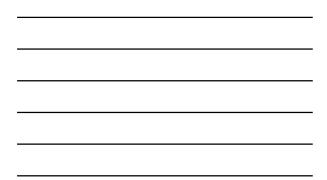
Kristy K Brock, Ph.D., DABR

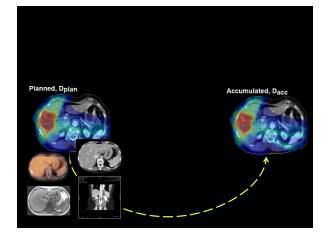
Associate Professor Department of Radiation Oncology, University of Michigan

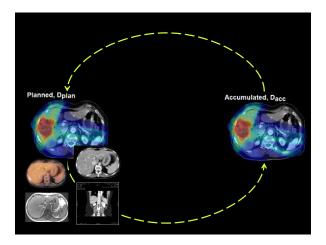


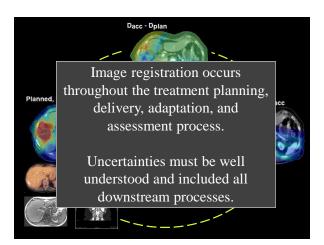
Disclosures


Licensing agreement with RaySearch
 Laboratories


Objectives


- Clinical use of Deformable Image Registration (DIR)
- Overview of DIR methods
- Challenges in the clinical application of DIR
- Overall challenges in the field of DIR





Role of Image Registration in RT

• Treatment (Re-)Planning

- Motion (Re-)Assessment (e.g. 4D CT)
- Multi-modality Images (e.g. MR-CT-PET)
- Segmentation
- Treatment Delivery
 - Propagate Contours
 - Image guidance (e.g. CBCT-MVCT)
 - Motion (Re-)Assessment (e.g. 4D CBCT)
 - Deformable Dose Accumulation
- Treatment Assessment
 - Adaptive radiotherapy
 - Retreatment

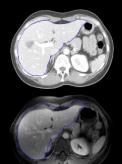
What Level of Accuracy do we Want and Need?

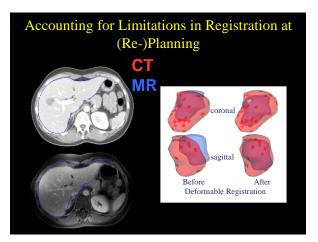
- Ideally ½ the voxel size
- Clinically acceptable ~ 2 mm (?)
- Even with the best algorithm, there will be cases where there are local uncertainties of > 2 mm
 - Predict these areas
 - Interpret them (quickly)
 - Account for them in the clinical process

Accuracy Determined by Dependent Activities

DIR for contour propagation

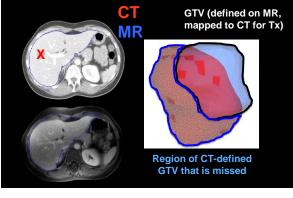
- Accuracy required: accurate enough to improve efficiency
- Results can be manually corrected

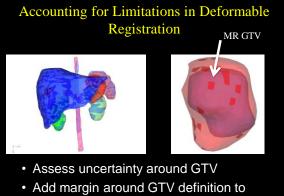



Wang, et al., PMB 2005

Accuracy Determined by Dependent Activities

DIR for Multi-Modality Planning

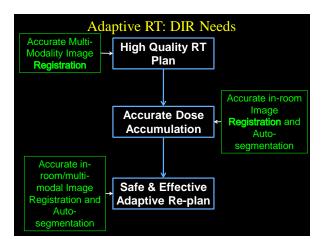

- Accuracy required: voxel level
- Uncertainties create a systematic error that propagates throughout the treatment

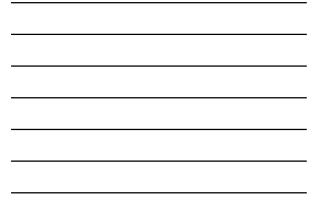


Accounting for Limitations in Rigid Registration

account for uncertainty when required

Accuracy Determined by Dependent Activities


DIR for Dose Accumulation


- Accuracy required: Dose Grid Size or Dose Gradient
- Uncertainties create a systematic or random impact on dose, depending on number of fractions

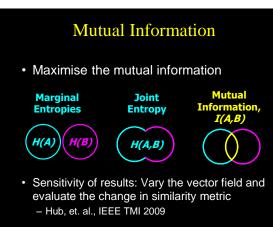
Accumulated, Dacc

M Velec, IJROBP, 2013

Reliability of Registration Techniques

Deformable Registration

- Can it be reliable?
 - YES!
- Can it be unreliable?
 - YES!


Deformable Registration Algorithms How do they work?

- Match something
 - Intensity, gradients, boundaries, features
 What happens when the intensity correspondence
- Issues become even more challenging in Adaptive RT
- -- Dramatic changes in tumor/normal tissue volume
- -- Non-diagnostic quality images
 - defined?
 - What happens with the features aren't visible?
- Constrain by a function
 - Geometric, physical, biomechanical
 - Can you rely on this model when the match above
 - is missing?

How is Registration Performed?

Metric	Regularization	Optimization
Your Eye	Translation	Brain-power
Least Squares (Points)	Translation + Rotation	Simplex
Chamfer Matching (surface matching)	Affine (Translation + Rotation +	Gradient descent
Contour matching	scaling + shearing)	etc
Mean Square Difference	Spline (B-spline, Thin plate spline)	
Correlation Coefficient	Physical (optical/fluid flow, elastic body)	
Mutual Information	Biomechanical	

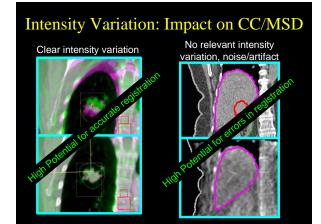
How Reliable is the Max MI?

-MI

Min –MI

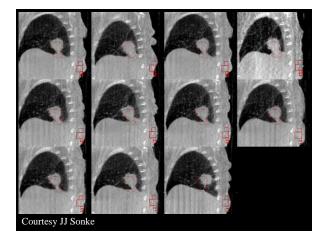
Best Solution

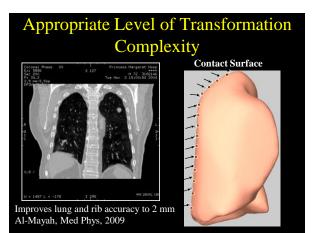
· Actually, min -MI

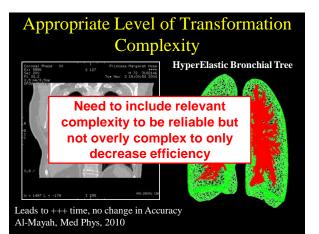

X

Min-MI

Best Solution

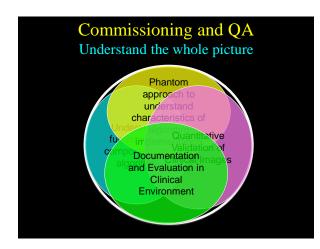

-MI

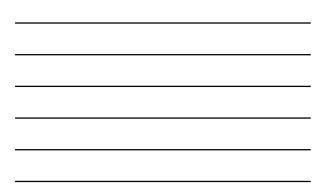




8

<i>How</i> is Registration Performed?			
Metric	Regularization	Optimization	
Your Eye	Translation	Brain-power	
Least Squares (Points)	Translation + Rotation	Simplex	
Chamfer Matching	Affine	Gradient descent	
(surface matching)	(Translation + Rotation +		
Contour matching	scaling + shearing)	etc	
Mean Square Difference	Spline (B-spline, Thin plate spline)		
Correlation Coefficient	Physical (optical/fluid flow, elastic body)		
Mutual Information	Biomechanical		

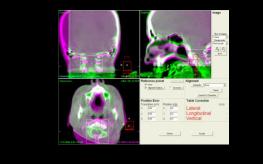




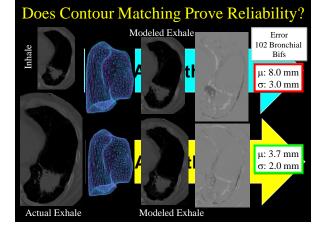
Challenge: Validation and QA How do we Prove it is Reliable?

Commissioning is Important!

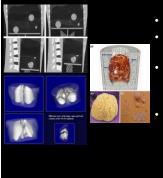
- LINAC
 - Know how it works
 - Accept and Commission
- Planning System
 - Know the dose calculation algorithm
 - Accept and Commission
- Deformable Registration Algorithm
 - Find out how it works!
 - Accept and Commission the software
 - Perform an end-to-end test in your clinic


Challenge: How do we Communicate the Uncertainty?

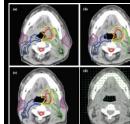
Uncertainty Assessment	Phrase	Description
0	Whole scan aligned	 Anatomy within 1 mm everywhere Useful for structure definition everywhere Ok for stereotactic localization
1	Locally aligned	Anatomy local to the area of interest is un-distorted and aligned within 1mm Useful for structure definition within the local region Ok for localization provided target is in locally aligned region
2	Useable with risk of deformation	 Aligned locally, with mild anatomical variation Acceptable registration required dormation which risks altering anatomy Registreed mags should'nt be used solely for target definition as target may be deformed Increased reliance on additional information is highly recommended management and an analysis and be used in complementary manner and no image should be used by itself
3	Useable for diagnosis only	 Registration not good enough to rely on geometric integrity Possible use to identify general location of lesion (e.g. PET hot spot)
4	Alignment not acceptable	 Unable to align anatomy to acceptable levels Patient position variation too great between scans (e.g. surgical resection of the anatomy of interest or dramatic weight change between scans)



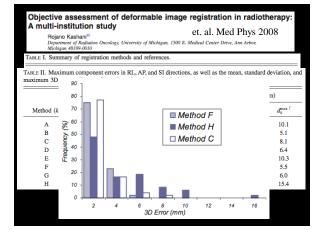
Visual Verification Excellent tool for established techniques Not enough for Commissioning


Validation Techniques

- Matching Boundaries
 - Does the deformable registration map the contours to the new image correctly?
- Volume Overlap
 DICE, etc
- Intensity Correlation
 - Difference Fusions
 - CC, MI, etc
- Digital/Physical Phantoms
- Landmark Based
 - TRE, avg error, etc



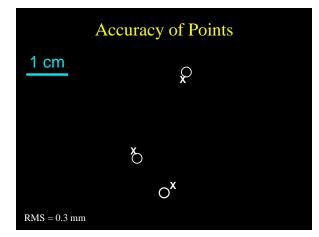
Digital or Physical Phantoms

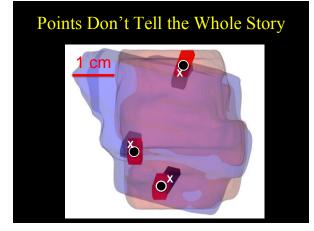

- NCAT Phantom
- U of Mich lung phantom (Kashani, Balter)
- McGill lung phantom (Serban)
- Many great phantoms out there but also a lot of room for innovation – as described in the next 3 talks!

Example of Mathematical-Phantom Based Validation

• Wang, et al, PMB 2005

- Difference in images (ext) and gradient of image (int) act as forces
- Addition of active force (gradient of moving image)
- Accuracy: 96% voxels < 2 mm for
- mathematical phantom




Natural/Implanted Fiducials

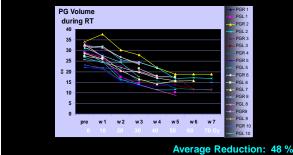
Reproducibility of point identification is sub-voxel

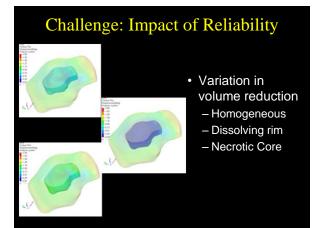
- Gross errors
 Quantification of
- Quantification of local accuracy within the target
- Increasing the number increases the overall volume quantification
- Manual techniqueCan identify max
- errors

MIDRAS Results

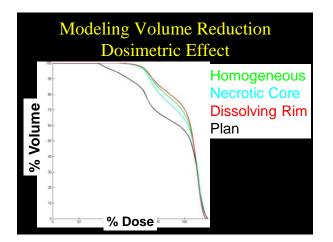
Brock, MIDRAS consortium, IJROBP 2010

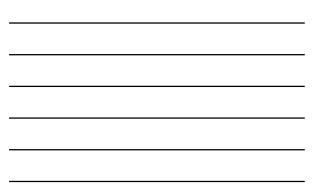
- Liver 4D CT: Deform Exhale to Inhale
- Lung 4D CT: Deform Inhale to Exhale
- Implementation matters
 - 3 Demons algorithms (Liver): μ = 2.3, 3.3, 4.8 mm
 - 3 Thin Plate Spline (Liver): μ = 2.1, 2.9, 7.8 mm
 - 4 B-Spline (Lung): μ = 1.6, 2.0, 2.5, 3.0 mm


Challenge: Pushing the Limits! Deformable Registration for Adaptive and Re-Treatment


Deformable Registration for Re-Tx Initial CT for Liver RT CT for Liver Re-Tx CT for Liver Re-Tx Please maptines bowel and dose to it's new position

Prospective Monitoring of Changes in Parotid Gland (PG) Size vs Dose Accumulated


10 patients: weekly MRIs during RT



16

Summary

- Many different deformable registration options, implementations
- Uncertainties must be incorporated
- Safe and effective re-planning requires accurate dose accumulation and quality RT plan – deformable registration is a critical component
- Issues that challenge deformable registration often become more extreme in the adaptive environment
- Relevant complexities for each anatomical site should be included in deformable registration to improve reliability
- Phantoms are essential for understanding challenges and potential pitfalls of deformable registration