W

Potentials for Dual-energy kV/MV On-board Imaging and Therapeutic Applications

Fang-Fang Yin

Department of Radiation Oncology Duke University Medical Center

MEDICAL PHYSICS

Acknowledgement

- · Dr Hao Li for his excellent PhD works
- This work is partially supported by a research grant from Varian Medical Systems

Specific Objectives

- Development of a novel on-board imaging technique which allows generation of virtual monochromatic (VM) CBCT from combined polychromatic kV/MV beam projections
- Evaluation of the effectiveness of dual-energy CBCT for artifact reduction

Introduction

· Onboard kV imaging

- \succ Good soft tissue contrast and clinically available
- Less penetrating and more metal artifacts

Onboard MV imaging

- Less attenuation and less metal artifacts
- Poor soft tissue contrast
- Can we take advantages of both kV and MV imaging?
 Monochromatic energy (replace polychromatic energies)
 - Aggregated kV/MV projections

UukeMedicine

DUKE UNIVERSITY MEDICAL PHYSICS

U

Introduction

- Conventional CBCT suffers artifacts: large object, metal,...
- Dual-energy technique can be used to reduce artifacts and photon starvation in kV ranges
- The research of applying dual-energy imaging technique into CBCT and kV/MV is still limited

UukeMedicine

Method: Dual Energy Imaging Principle

- In diagnostic x-ray energy range, the attenuation coefficient of a material can be decomposed into a photoelectric component and a Compton scatter component
- These two components are difficult to measure independently and are practically approximated with two basis materials, one with relatively high atomic number Z and the other with relatively low Z
- At a given energy, the high Z and low Z material have different composition of photoelectric effect and Compton scatter, which can be differentiated using dual-energy

U DukeMedicine

Method: Dual Energy Imaging Principle

• Two measurements I_L and I_H acquired with monochromatic beams at two different energies E_L and E_H can be therefore expressed as,

> $ln(I_L/I_0) = -x_A \mu_A(E_L) - x_B \mu_B(E_L)$ $ln(I_H/I_0) = -x_A\mu_A(E_H) - x_B\mu_B(E_H)$

From these two equations

$$\begin{bmatrix} x_A \\ x_B \end{bmatrix} = \begin{bmatrix} -\mu_A(E_L) & -\mu_B(E_L) \\ -\mu_A(E_H) & -\mu_B(E_H) \end{bmatrix}^{-1} \begin{bmatrix} \ln(I_L/I_0) \\ \ln(I_H/I_0) \end{bmatrix}$$

UukeMedicine

DUKE UNIVERSITY MEDICAL PHYSICS

Method: Dual Energy Imaging Principle

· Generalizations for polychromatic beams with lowenergy spectrum $S_L(E)$ and high energy spectrum $S_H(E)$,

> $\left(\ln(I_L/I_0) = \int S_L(E) \left[-x_A \mu_A(E) - x_B \mu_B(E)\right] dE$ $\left(\ln(I_H/I_0) = \int S_H(E) \left[-x_A \mu_A(E) - x_B \mu_B(E)\right] dE\right)$

· This involves integrals over the beam energy spectrum. In practice, it is difficult to have analytical solutions

U

Method: Dual Energy Imaging Principle

· An approximate solution proposed by Cardinal et al:

$$\begin{split} x_A &= \frac{a_0 + a_1 L + a_2 H + a_3 L^2 + a_4 L H + a_5 H^2}{1 + b_0 L + b_1 H} \\ x_B &= \frac{c_0 + c_1 L + c_2 H + c_3 L^2 + c_4 L H + c_5 H^2}{1 + d_0 L + d_1 H} \end{split}$$

> where $L = -ln(I_L/I_0)$ and $H = -ln(I_H/I_0)$

- > The parameters a_i, b_j, c_i, d_j ($i = 0 \sim 5, j = 0, 1$) can be experimentally determined and used for dual-energy imaging
- Alvarez and Macovski, Energy-selective reconstructions in X-ray computerized tomography. Physics in Medicine and Biology, 1976. 21(5): p. 733-44
 Zou and Silver. Analysis of fast KV-switching in dual energy CT using a pre-reconstruction decomposition technique. Vol. 6913. 2008: SPIE. 691313

UukeMedicine

Method: Dual Energy Imaging Principle

- For large object thickness with energy E lower than 17 MeV, the attenuation behaves asymptotically in a linear fashion and can be approximated as:
 - $ln(I/I_0) \sim -\mu_{acrylic}(E_p)x_{acrylic} \mu_{Al}(E_p)x_{Al}$ E_p : the peak energy of polychromatic spectrum
- As a good approximation, extend the application of the diagnostic energy range to the MV range
 - Cardinal, H.N. and A. Fenster. An accurate method for direct dualenergy calibration and decomposition. Medical Physics, 1990 17(3):327-41

UukeMedicine

MEDICAL PHYSICS

Fundamentals of VM Technology

· For the polychromatic kV and MV projections:

$$\begin{cases} \ln(I_{kV}/I_0) = \int S_{kV}(E)[-x_A\mu_A(E) - x_B\mu_B(E)]dE\\ \ln(I_{MV}/I_0) = \int S_{MV}(E)[-x_A\mu_A(E) - x_B\mu_B(E)]dE \end{cases}$$

 If we know x_A and x_B, we can create the virtual monochromatic energy projections:

$$\int \mu(E_0)ds = x_A \mu_A(E_0) + x_B \mu_B(E_0)$$

- $\mu_A(E_0)$ and $\mu_B(E_0)$ are attenuation coefficients which may be obtained from NIST at a arbitrarily selected VM energy E_0

UukeMedicine

 I_{kV} : kV intensity I_{MV} : MV intensity S_{kV} : kV spectrum S_{MV} : MV spectrum

Fundamentals of VM Technique

- Acquires two sets of projections with low- and highenergy beams of the same object
- Pre- or post-reconstruction processing to extract the spectral information for different applications
- Synthesize a single set of monochromatic (VM) CBCTs using dual-energy projection data (Alvarez et al)
 - A basis material decomposition before reconstruction
 - Linear combination of density maps for the decomposed images
 - Remove beam hardening artifacts and photon starvation as the major benefits of VM application in diagnostic CT

UukeMedicine

Methods: Beam Calibration

To get x_A and x_B , we use the approximate solutions:

Methods: Attenuation Conversion

W

Window: [-1000 1000]

UukeMedicine

DUKE UNIVERSITY MEDICAL PHYSICS

W

Result	s: Effec	ct of Ove	erlap Pro	jections	
1 Proj	Air	5 Proj PMP	LDPE	10 Proj Delrin	
1 proj	12.30	2.03	0.42	4.82	
5 proj	12.39	2.03	0.39	4.88	• PMP
10 proj	12.50	2.04	0.36	4.87	MEDICAL PHYSICS

Results: Effect of Beam Orientation

U

W

Window: [-500 2000] DUKE UNIVERSITY MEDICAL PHYSICS

8

Conclusion

- A novel aggregate technique was proposed to generate VM CBCTs from kV/MV projections.
- CNR improvement depend on the selection of VM energies and the material.
- For the CatPhan study, one overlap projection can suffice to generate CBCT images.
- · The favored orientations for kV/MV beams are
 - > MV beam through heavy attenuation direction
 - > kV beam through light attenuation direction

UukeMedicine

