Acknowledgements and Disclosure

- X. Allen Li, Ph.D
- Guangpei Chen, Ph.D
- Feng Liu, Ph.D
- An Tai, Ph.D
- Eric Paulson, Ph.D
- Entesar Dalah, Ph.D
- Victor Chen, Ph.D
- Cheng Peng, Ph.D
- Andrew Godley, Ph.D
- Cungeng Yang, Ph.D
- J. Frank Wilson, MD
- Colleen Lawton, MD
- Beth Erickson, MD
- Chris Schultz, MD
- Dian Wang, MD
- Julia White, MD
- Beth Gore, MD
- Selim Firat, MD
- Adam Currey, MD
- Chengliang Yang, MD

Funding Supports: MCW, Fotsch, Siemens, Elekta, Prowess

Adaptive Radiotherapy

- **Adaptive radiotherapy** is a *state-of-the-art approach* that uses a *feedback process* to account for *patient-specific anatomic and/or biological changes*, thus, delivering highly *individualized radiation therapy* for cancer patients.

- Different from IGRT:
 - ART is plan modification, i.e. *re-planning*
Online Adaptive Radiotherapy

- Online Adaptive RT involves modification of the treatment plan before the delivery of the fractional dose to accommodate the inter-fractional variations in:
 - Patient anatomy
 - Tumor or organs at risk
 - Physiology, biology
 - Proliferation, radiosensitivity, response, cell density, hypoxia, etc.

Main challenge: Speed

Need to generate a dedicated plan in a very short amount of time (couple of minutes)

Good News:

1. The adaptive plan does not have to be from scratch
 - Many components of the daily plan similar to the original plan,
 - Anatomy
 - Optimum plan parameters
 - Many plan decisions

2. Technological improvements and computational power increase the speed of plan generation
 - e.g. Graphical Processing Units (GPUs)
Increase in computer speed

Graphical Processing Units (GPU) accelerated processes:
- daily image reconstruction
- dose calculation
- DIR
- optimization

GPU-based ultrafast IMRT plan optimization
- daily image reconstruction
- dose calculation
- DIR
- optimization

Computation speed can only help if automated
- **Automation**: The critical issue
 - Some processes are hard to automate (), need human/expert

Main limitation of Adaptive Replanning:
- **Imaging**
 - In-room image quality is critical for ART
 - Cone beam < kV fan beam CT < MRI
 - Imaging is limited in:
 - Microscopic disease spread
 - Visualization of tumor biology
 - Functional/Physiological imaging specificity/sensitivity is not reliable yet

 - Definition of CTV is not based on visualization but mostly probabilistic
 - With large PTV-CTV margins, also the invisible microscopic disease was being irradiated (Vanherk, Acta Oncol, 2008)
 - Drastic reduction of PTV margins with ART is questionable
Major challenge for online replanning:

Contour delineation on the daily images

- Very **time consuming** process, still not fully automatable
- Auto contouring: Best option: DIR (Deformable Image Registration + Auto-segmentation)
 - Accuracy is not perfect
 - Not 100% reliable
 - Visual verification by human expert necessary

DIR is not fully reliable

Especially bad for large deformation (where ART is most needed)

Online Replanning Methods that don’t require contour delineation

An algorithm for shifting MLC shapes to adjust for daily prostate movement during concurrent treatment with pelvic/lymph nodes

Automatic online adaptive radiation therapy techniques for targets with significant shape change: a feasibility study
Slice-by-slice 2D rigid registration for each MLC pair (Court, et al 2005)

Applying different shifts for prostate and pelvic lymph nodes (bony anatomy). (Ludlum, et al 2007)

Selecting from a pool of plans

- Plan pool
 - “process first tries to find a best plan for the daily target from a plan pool, which consists of the original CT plan and all previous re-optimized plans”

Li 2011 PMB

Virtual couch shift (VCS): accounting for patient translation and rotation by online IMRT re-optimization

No contour generation needed but optimization used to match rotated/translated pretreatment dose distribution
Challenges of Online Replanning:

Plan Optimization

- To get best quality, optimization is needed
- Challenge: to make a new optimization without an expert (physicist, physician) present, and in a quick, automated and reliable manner:
 - With the help of faster computing (e.g. GPU), the actual optimization itself can be very fast (Men et al. 2010, Peng et al. 2012, Lu 2010, ..)
 - Complete IMRT < 1m , fluence based or Direct Aperture Optimization
 - Main time consuming part is the "trial and error" tweaking process to determine the clinically optimum Objective Function (OF)
 - Different than the Pareto optimum OF
 - Attempts to automated IMRT optimization exist, eliminating the human intervention

Aperture Morphing Methods: No need of online plan optimization

- Changing the segment shapes based on the relationship between the planCT and daily CT contour in the Beam's Eye View

Mohan, et al IJROBP 2005

Aperture Morphing Methods

- Mohan 2005
 - Using the target + OAR overlap projections
 - 2D demons DIR to morph intensity map
 - Followed by MLC segmentation
- Feng 2006
 - Using 3D DIR vector field \(\rightarrow \) collapse to each beam angle (2D vector field)
 - Deform segment shapes with the 2D VF
 - Changing MLC positions directly
 - Using only the target contour projection
- Ahunbay 2008
 - Using a linear distance relationship
 - Using only the target contour projection
 - Changing MLC positions directly
 - Apply a segment weight optimization (SWO) afterwards to improve dosimetry (optional)
Segment Aperture Morphing Algorithm

Planning

- Fast and simple algorithm:
 - Morphing the aperture shapes based on the deformation in the PTV projection from BEV of each beam
 - Stretching apertures based on relative distance from edge of PTV projection
 - New PTV projection is always covered by the combined intensity map from the beam

Daily

- No shifting of patient (couch) required

Ahunbay et al, MP, 2008

Gradient Maintenance Method

- Only requiring delineation of new target
- The daily optimization is more automatable since the achievable dose gradients don't change with daily anatomy

Ahunbay and Li, ASTRO 2013

Challenges for Online Replanning

- Plan approval by the physician
 - Compare to the original plan and/or IGRT reposition plan
 - Limiting approval to:
 - When plan quality is not equal to or better than the compared plan
- IMRT QA
 - (is it really warranted?)
 - Limiting the MLC positional variations would minimize requirement
 - Aperture morphing methods modifying MLCs directly
 - Direct Aperture Optimization instead of fluence optimization
 - Starting from an existing original plan
 - Electronic verification would handle most possible errors
 - Verification during treatment (e.g. via EPID)
Variation from original to daily plan

- Optimize from scratch
- Optimize from original plan
- Aperture morphed
- Optimize starting from aperture morphed plan

Ahunbay, et al. IJROBP 2013

Future requirements / current limits of online ART

- More automation
 - Smarter algorithms
 - Contour delineation
 - Optimization

- Superior imaging
 - Microscopic spread
 - Using more physiological/functional imaging

Thank you!