

Cancer Center Making Cancer History"

Multi-Institutional Data Pooling

Rebecca M. Howell, PhD Associate Professor Radiation Physics rhowell@mdanderson.org

Learning Objective

- Discuss technical and process issues related to pooling data among institutions in the context of collaborative studies among the presenting institutions.
- In particular, I will be discussing an on-going data pooling project between my institution and the Mayo Clinic.
 - Focusing on rationale for data pooling, challenges in data collection, understanding results, and long-term goals.

Interest in RT-related cardiac effects grew almost exponentially after a publication in NEJM by Darby *et al.* in 2013.

The NEW ENGLAND JOURNAL of MEDICINE

STABLISHED IN 1812 MARCH 14, 2013 VOL. 368 NO. 11

Risk of Ischemic Heart Disease in Women after Radiotherapy for Breast Cancer

Sarah C. Darby, Ph.D., Marianne Ewertz, D.M.Sc., Paul McGale, Ph.D., Anna M. Bennet, Ph.D., Ulla Blom-Goldman, M.D., Dorthe Brønnum, R.N., Candace Correa, M.D., David Cutter, F.R.C.R., Giovanna Gagliard, Ph.D., Bruna Gigante, Ph.D., Maj-Britt Jenson, M.Sc., Andrew Nisbet, Ph.D., Richard Peter, F.R.S., Kazeren Rahimi, D.M., Carolyn Taylor, D.Phil, and Per Hall, Ph.D.

Linear Dose Response Model

 Rate of major coronary events according to mean radiation dose to the heart compared with the rate with <u>no</u> radiation exposure to the heart.

But how were mean heart doses determined?

Based on patients' individual RT records, but were retrospectively reconstruted treatment plans using CT scan of a "representative" patient.

Many More Unanswered Questions

Only mean heart dose
 Considered *historic* was considered.
 type BRT and

Risk associated with partial volume effects remains unknown..... Considered historic type BRT and reported a mean heart dose for the population \approx 6 Gy

Are those data relevant in the context of modern BRT?

Motivation for Data Pooling in BRT

- Currently no large database exists that reports standard dose metrics of modern BRT for the heart and lungs.
- Normal tissue complications after BRT have been widely published, including cardiac and pulmonary toxicities.
 - However, these are based on early treatment trials or population studies and with no normal tissue doses or dose estimations only.

Objectives

· Primary objectives of our study were

- 1. To establish a bi-institutional database in order to ascertain baseline values for typical heart and lung doses for modern BRT.
- 2. To evaluate the effect of various treatment techniques on those doses.

Basic Requirements for Study

- · Consensus on what data to collect
- · How many patients to include from each institution
- DVH data extraction from TPS

How many patients?

- How many could we reasonably accrue in about 6 months?
 - Institutions 1 and 2 treat approximately 1000 and 350 breast patients with EBRT each year, respectively.
- Agreed to collect data for 100 right and 100 left BRT patients from each institution.
- Data were collected using consecutive sampling and included patients who received definitive EBRT for a primary breast cancer and who completed RT.

How did we decide what data to collect?

• We wanted to of course collect DVH metrics that we thought may be related to normal tissue toxicities, but also....

Needed to collect sufficient additional details about the patients, the prescriptions, and treatment beams so that we could interpret any differences that we might observe in data from collected at different institutions.

Data Collected for Each Patient

Treatment Technique	Demographics	DVH	Data
- Right, Left, Bilateral	- DOB	Heart	Lungs
- For Left: FB or DIBH	- Gender	Max[Gy]	Max[Gy]
- Breast or CW	- Age at RT	Min[Gy]	Min[Gy]
- Prescription Dose(s)	- Race/Ethnicity	Mean[Gy]	Mean[Gy]
- Field type: T, SC, IMC	- BMI	V4Gy[%]	V5Gy[%]
(upper/lower/supp),		V25Gy[%]	V13Gy[%]
 Field Energies 		V30Gy[%]	V20Gy[%]
		V50Gy[%]	

DVH Data Extraction

- DVH data extraction generally includes the tasks of manually retrieving the treatment plan from storage, navigating its contents, and transcribing plan information into the analysis software.
- This process can be time-consuming and error-prone, especially when information needs to be extracted from a large number of treatment plans for clinical studies.

Methods

- How were DVH data extracted in our study?
 - In-house developed system, PlanDB, that can store, organize, and present radiation treatment plan data.
 - In use at our institution since 2008.

ME Kantor, G Starkschall, and P Balter. Relational Database of Treatment Planning System Information. J Radiat Oncol Inform 2013;5:1:1-10)

PlanDB Components and Implementation

- Components
 - Data source: Pinnacle³ (Philips Medical Systems, Milpitas, CA)
 - Database: open-source, relational database (PostgreSQL, PostgreSQL Global Development Group, <u>http://www.postgresql.org</u>).
- Implementation
 - The system was implemented through a combination of the internal scripting language in the TPS and 3 externally executed codes.

Kantor, Starkschall, and Balter, J Radiat Oncol Inform 2013;5:1:1-10

PlanDB Code Details

- The internal scripting language in the TPS is used to access and output the DVH data.
- 3 additional externally executed codes are used to parse ASCII data and interact with a networked database server:
 - 1. File parser capable of converting structured TPS files into hierarchical objects (Python).
 - 2. Abstraction function to take these raw objects as input and convert them to processed objects more suited for database input (MATLAB).
 - 3. General function that accepts processed objects as input and queries the database (Python).

Kantor, Starkschall, and Balter, J Radiat Oncol Inform 2013;5:1:1-10

	Choose site: Breast -	Restore Si	te Default	Cancel
DVH Data Exported	Open PDF in Acrobat once created	* yes	⇔ no	
to Database	Anonymize the PEF?	 yes 	* no	
Pinnacle hot script	3: Images per Page 4: HLC Display Style 5: HLC Display Color 6: HLC Control Point 7: DRR Rendering Settings 8: Capture all CPs	Wireframe 8 Dutline Leaves blue #0 Pinnacle No		
Darkroom create	9: Capture BEV Views	Lt Med FIF1, Lt Med FIF2, Lt Lat Tang 10K, Lt Med Tang 10K, Lt Breast Med Tang 6X, Lt Breast Lat Tang 6X, Lt Lat FIF		
pai, aloo inolaaoo	BEV DRRs			Delete
option to send DVH data to PlanDB.	1: POIs to Display 2: ROIs to Display 3: Images per Page 4: MLC Display Style 5: MLC Display Color	Enone] Wireframe tumor bed, scar Wireframe 0 Outline Leaves blue		ſ
	7: DRR Rendering Settings	Pinnacle		
 Script is run for 	8: Capture all CPs 9: Capture BEV Views	No Lt Med FIF1, Lt 18%, Lt Med Tang Tang 6%, Lt Brea FIF	Med FIF2, Lt L ; 18%, Lt Bream st Lat Tang 60	at Tang st Med (, Lt Lat
every approved	BVH Plot			Delete
	DVW Statistics Table			Delste
plan that is sent to	Inage Bataset Table			Delete
Mosaic 🔶	Send data to planBB			Delete
		Proceed		pa la

Customizable Database Queries

plan DB

Amme Moundi Breast_Cardiac_L Create study mmms (0)		Define authorized study users	share study with Hamoui,Zaher × Hoffmann,Mark Kenneth × [add user] •
V## levels (4, 5, 13, 20, 25, 30, 50 D## levels (1 apply changes		}	Indicate desired dose and volume levels + default min, max, mean
sheets add			

Customizable Database Queries

plan DB		
my stadies (jako his (help) legent ment helpest_Center_L ment (1)	share study with Hamou, Zaher x Hoffman, Mark Kanneth x [add user]	Ŧ
4, 5, 13, 20, 25, 30, 50 0#2 Events 1 1 1 1 1 1 1 1 1 1 1 1 1		
apply changes sheets sold	delete study	elect plan(s) of interest
institution / plan name / trial name	export date	include
v9.8 BGG / Breath Hold / Lt Breast Aprvd BDS	2014/06/30 10:26 ar	r 🗌
v9.8 BGG / Breath Hold / Lt Breast Aprvd BDS	2014/07/08 12:15 pr	r 🗹

Customizable Database Queries

- Selected data parameters sent via email to user (based on login) as .xml file
- · Example of output data

	mrn	name	plan	trial	roi	volume	dose min	dose mean	dose max	V5	V13	V20	D1
	123456	Doe, Jane	DIBH	Lt Breast	Total Lung	3766.94	0.02	1.88	39.35	8.13	4.52	3.36	33.12
	123456	Doe, Jane	DIBH	Lt Breast	Lt Lung	1704.20	0.09	4.01	39.35	17.96	10.00	7.42	34.99
	123456	Doe, Jane	DIBH	Lt Breast	tumor bed	4.44	39.72	40.66	41.12	100.00	100.00	100.00	41.06
	123456	Doe, Jane	DIBH	Lt Breast	Rt Lung	2062.48	0.02	0.12	1.01	0.00	0.00	0.00	0.40
	123456	Doe, Jane	DIBH	It Breast	Heart	577.70	0.15	0.51	10.34	0.27	0.00	0.00	3.36

Data is sorted by roi name

Standardized roi nomenclature is beneficial

Now the non-automated part

· Limitations of current method

- Format of PlanDB data not ideal for our data pooling study.
 - For pilot study, we manually sorted data to best format
 - Next steps, automate this process.
- In our pilot study, we only used PlanDB to extract DVH data.
 - Patients' demographics and prescription information were abstracted from electronic medical records and Mosaic.

Results

- Between our the 2 participating institutions, we pooled data for 350 BRT patients:
 - 200 with left-sided cancers (74% treated with DIBH) and
 - 150 with right-sided cancers

Results - Pooled Data

		Tangent (T)		T + 3	SCN	T + SCN + IMN		
	Dose	Left Right		Left Right		Left	Right	
Organ	Metric	(N=93)	(N=77)	(N=10)	(N=8)	(N=89)	(N=64)	
	Mean[Gy]	1.1±1.2	0.5±0.5	2.9±1.6	1.7±2.8	4.0±2.8	2.1±1.2	
	V4Gy[%]	3.6+6.7	0.8±2.5	14.4±9.2	7.4±18.9	27.2±14.5	14.3±13.2	
Heart	V25Gy[%]	0.5±1.7	0.0±0.0	2.0±2.3	1.3±3.4	2.0±5.0	0.3±0.8	
	V30Gy[%]	0.5±1.5	0.0±0.0	1.5±1.7	1.2±3.1	1.3±3.3	0.2±0.5	
	V50Gy[%]	0.0±0.1	0.0±0.0	0.0±0.1	0.0±0.0	0.1±0.2	0.0±0.0	
	Mean[Gy]	2.6±1.4	3.4±1.3	6.0±1.7	7.9±3.4	7.0±2.0	9.3±2.0	
	V5Gy[%]	10.7±5.7	13.7±4.9	23.1±6.3	31.8±13.6	27.4±9.5	35.8±7.3	
Lungs	V13Gy[%]	5.8±3.4	7.4±2.9	14.1±5.1	18.2±10.0	17.2±5.5	23.1±5.9	
	V20Gy[%]	4.4±2.5	5.7±2.5	10.9±3.7	14.1±6.9	13.0±4.0	18.0±4.7	
	Mean[Gy]	5.2±2.5	6.0±2.2	12.7±3.7	12.7±3.5	14.0±3.6	16.0±3.1	
Ipsi-lateral	V5Gy[%]	21.8±9.2	24.7±8.4	50.2±13.9	49.3±10.3	55.9±12.7	62.7±11.4	
Lungs	V13Gy[%]	11.9±5.8	13.3±5.0	31.0±11.8	27.6±7.4	35.8±10.3	40.7±9.4	
	V20Gy[%]	9.0±4.8	10.3±4.4	24.1±8.7	22.9±7.7	27.5±8.1	31.8±7.5	

Understanding the Differences in Data between Institutions

• It is important not to jump to conclusions about differences in the data between the institutions, but

rather to try to understand differences in treatment techniques and data collection processes that may be the underlying source(s) of the differences.

Differences

- Potential sources of differences in dose metrics between our two institutions include the following:
 - Initial plan versus composite plan DVH data.
 - Different percent of left BRT treated with DIBH and FB.
 - May be using different target definition
 - Different patient populations and breast cancer staging.

Future Implications of Cooperative Prospective Data Pooling for BRT

- · Define standard dose metrics.
- Correlation of actual lung and heart doses with long-term outcomes.
- Establishment of more accurate NTC doseresponse models based on:
 - actual patient doses, and
 - dose volume effects not simply mean dose.
- Evaluation of treatment techniques across multiple institutions for quality comparisons.

Acknowledgements

- M.D. Anderson Cancer Center
- Simona Shaitelman, MD
- Wendy Woodward MD, PhD
- Michael Kantor
- Mohammad Salehpour, PhD
- Mary Martel, PhD
- Mayo Clinic Rochester

 Charles S. Mayo, PhD
 Ivy A. Petersen, MD
- Elizabeth S. Yan, MD
- Sean S. Park, MD
- Robert W. Mutter, MD

Extra Slides

Evidence of Radiation Related Cardiac Effects

- Until recently, there was a general belief that radiation related cardiac effects were only associated with high doses, *i.e.*, >30 Gy.
- More recently, evidence is emerging that cardiac toxicity can occur at much lower doses.
 - A bomb survivors (Preston et al. 2003)
 - Patients treated for peptic ulcers (Carr et al. 2005)
 - Childhood cancer survivors (*Mulroony et al.* 2009, Tukenova et al 2010)
 - Breast cancer survivors (*Taylor et al.* 2007, EBCTCG, 2005, Darby et al. 2010).

Absolute Risk of a RT-Related Major Coronary Event

 For a 50 year old woman with no preexisting heart disease, the absolute risk of death from ischemic heard disease would increase from 1.9% to 2.4% and 3.4%, respectively for mean heart doses of 3 Gy and 10 Gy, respectively:

Absolute increase in risk is relatively small, between 0.5 and 1.5%.

Darby et al. NEJM 2013

Why was the Darby et al. study such an important study? • By 2024, it's estimated that there Other, 15% will be > 3.9 x10⁶ Kidney, 2% breast cancer Ovary, 2% survivors. Cervix, 3% Assuming 50% Lung and bronchus, 3% receive RT, radiation Non-Hodgkin lymphoma, 4% may be related to 10,000 to 30,000 deaths from major coronary events for Thyroid, 7% mean heart doses Colon and rectum, 8% between 3 and 10 erine ous, 8% Gy.