

Deformable Image Registration, Contour Propagation and Dose Mapping: 101 and 201

Marc Kessler, PhD, FAAPM The University of Michigan

Conflict of Interest

I receive direct or indirect support from:

- University of Michigan
- National Institutes of Health
- Varian Medical Systems

Data in Radiotherapy

Map structures from one image volume to another

Data in Radiotherapy

Map dose and correlate with functional changes

Planning CT

SPECT Imaging

The Mechanics

Image registration

Find the geometric correspondences between image data sets (2D/3D/4D) that differ in time, space, modality ... and ... maybe even subject

Data propagation and fusion

Map data such as anatomic contours, regions of interest and doses between image data sets

The Mechanics

Compute the geometric correspondence between image data sets (2D/3D/4D) that differ in time, space, modality ... and ... maybe even subject

The Mechanics

Compute the geometric correspondence between image data sets (2D/3D/4D) that differ in time, space, modality and ... maybe even subject

$$\begin{split} X_{CBCT} &= F(X_{CT}, \{\beta\}) \\ X_{CBCT} &= F(X_{CT}, \{\beta(X_{CT})\}) \\ X_{CBCT} &= F(X_{CT}, \{\beta(X_{CT}, \phi)\}) \end{split}$$

What Are The Knobs?

Multi-resolution B-Splines ... 4DT CT Example Divide and Conquer!

Exhale State

Inhale State

What Are The Knobs? Multi-resolution B-Splines ... 4DT CT Example Divide and Conquer!

Exhale State

Inhale State

What Are The Knobs?

Multi-resolution B-Splines ... 4DT CT Example This looks pretty darn good!

Exhale State

deformed Inhale State

What Are The Knobs? Different knobs for different locations?

This requires a segmentation!

What Are The Knobs? Different knobs for different time-scales? Seconds Minutes Hours Days Months Intra-fraction

How Many Knobs?

Spatially invariant ... global Rigid ... to full Affine ... rotate, translate, scale, shear

Spatially variant ... local B-splines, Cubic, Thin-plate Finite element models Dense deformation fields ... dx, dy, dz for every voxel!

more knobs

fewer

knobs

How Many Knobs?

Spatially invariant ... global Rigid ... to full Affine ... rotate, translate, scale, shear

Spatially variant ... local B-splines, Cubic, Thin-plate Finite element models Dense deformation fields ... demons, other free form

more knobs

fewer

knobs

How Many Knobs? Global rigid Locally rigid Deformable Too Few2 3, 6, ... 3x # voxels

How many knobs (degrees of freedom) are needed to carry out (accurate) deformable image registration?

20%	2.	12	
20%	3.	42	
20%	4.	3 x number of voxels	
20%	5 .	More than 12 and less than 3 x	<mark># voxel</mark>

Similarity Metrics

Image intensity based

- Sum of the differences
- Cross correlation
- Mutual information (multimodality)

Geometry based

- Point matching (LMSE)
- Line / edge matching
- Surface / chamfer matching

Similarity Metrics

... using an information theory-based approach

H(I_{CT}) H(I_{MR}) Individual Information Content

H(I_{CT},I_{MR}) Joint Information Content

Information Theory

 $H(I_{A}, I_{B}) = H(I_{A}) + H(I_{B}) - MI(I_{A}, I_{B})$ Joint Individual Mutual Entropy Entropies Information $MI(I_{A}, I_{B}) = \sum p(I_{A}, I_{B}) \log_{2} \left[\frac{p(I_{A}, I_{B})}{p(I_{A}) p(I_{B})} \right]$ These are just intensity histograms!

Information Theory

$$H(I_A, I_B) = H(I_A) + H(I_B) - MI(I_A, I_B)$$

The mutual information of two image datasets is a maximum when they are geometrically registered ...

... MI can be used as a metric

⁴⁸ Shannon - Bell Labs / ⁹⁵ Viola - MIT

How about an example?

Head & Neck Example

Split screen

Color gel

Head & Neck Example

Visual validation ... "looks" good

Head & Neck Example

Sonke / Nk

Head & Neck Example

$$E_{total} = E_{similarity} + \alpha E_{stiffness}$$
intensity similarity metric
tissue-dependent regularization
$$E_{vol} = \int w_c(x) |\det J_T(x) - 1|^2 dx$$

CBCT deformed w/ and w/o constaint

Regularization

... refers to a process of introducing additional information in order to solve an ill-posed problem or to prevent over-fitting.

This information is usually of the form of a penalty for complexity, such as restrictions for smoothness or bounds on the vector space norm.

Grand Unification

Essential Image Processing Tools

Image registration

Finding geometric correspondences between image data sets (2D/3D/4D) that differ in time, space, modality ... and ... maybe even subject

Data propagation and fusion

Mapping data such as anatomic contours, regions of interest and doses between image data sets

Data Propagation

Outlines

contours ... data *just* at boundaries

Voxel data dose & image values ... data at every point

Circa 1985

Contour Propagation

Registration using "Demons"

Contours defined on one DICOM image
study can be transferred to another DICOM
image study by:
study can be transferred to another DICON image study by:

21%	1.	using simple "cut and pa <mark>ste"</mark>
32%	√ 2.	registering the imaging studies then mappi <mark>ng the</mark> structures using the resulting transformati <mark>on</mark>
11%	3.	using IHE-RO to transferring the contours and images between two DICOM servers
16%	4).	scaling the cont <mark>ours by the ratio of the different</mark> pixel sizes
21%	5.	It is not possible to tran <mark>sfer contours between</mark> studies

Data Propagation

Outlines contours

... data just at boundaries

Voxel data dose & image values ... data at every point

Apply deformation to dose grid

CBCT day n

CBCT day m

Pouliot / UCSF

Dose Mapping	
Subtraction of tw	o mapped doses
	 Change in shape Increased cord do Dose Difference (%) >5% >10%

- in shape
- ed cord dose

The major difference in the process of transferring doses and contours between two studies is ...

44%	1.	Doses depend on tissue density and cont <mark>ours</mark> do not
11%	2.	Doses do not change once a fraction is d <mark>elivered, contours do</mark>
0%	3.	Transferring doses is more time consuming than transferring contours
22%	V	XF-doses-requires accurate registration at every voxel, XF contours requires this only at boundaries
22%	5.	Transferring doses requires knowledge of the alpha-beta ratio, transferring contour does not

Vendor Questionnaire

- 1. What are the degrees of freedom of the approach (e.g., 3 x # of B-spline knots, DVF)?
- 2. What is the "goodness of match" metric that drives the registration?
- 3. What type of regularization do you use to keep the transformation "reasonable" and "useable"?
- 4. Any other "secret sauce" you want to explain or even allude to is great (and appreciated by everyone)?
- 5. Do you transfer / map structure outlines?
- 6. Do you transfer dose from one scan to another?

Vendor Answers - Raysearch

What are the degrees of freedom of the approach

The number of degrees of freedom equals 3 x # voxels in the deformation grid

What is the "goodness of match" metric that drives the registration? An objective function consisting of 4 non-linear terms

Image similarity through correlation coefficient (CT/CBCT) or mutual information (MR)

Grid regularization (see below)

Shape based grid regularization when regions of interest are defined in the reference/floating image to ensure that the deformable registration is anatomically reasonable.

When controlling structures (regions or points of interest) are defined in both images, a penalty term is added which aims to deform the structures in the reference image to the corresponding structures in the target image.

Vendor Answers - Raysearch

What type of regularization do you use to keep the transformation "reasonable" and "useable".

Regularization of the deformation field is obtained by computing how much the coordinate functions deviate from being harmonic functions.

Any other "secret sauce" you want to explain or even allude to is great (and appreciated by everyone).

The use of both image intensity and structural information to anatomically constrain the deformations and give more control to the user.

Do you transfer / map structure outlines

Yes, in either direction.

Do you transfer dose from one scan to another?

Yes, in either direction.

Other Questions to Asks

- 1. Do you support multiple registrations per pair of datasets? Rigid and Deformable?
- 2. Do you support "limited field of view" clip boxes? Can these be based on anatomic structures?
- 3. How do you map dose between datasets?
- 4. Can you export the resulting transformation? What about the interpolated image data?
- 5. What tools to access the accuracy of registrations?
- 6. Do you provide tools to document the results? Can you "lock and sign" a registration?

The overall *mechanical* objective of deformable image registration is to:

43%	1.	maximize the similarity between two imag
21%	2.	Register just non-rigid features
0%	<mark>√</mark> ^{3.}	Transfer and merge information from different imaging and dose datasets
21%	4.	Handle CT-I <mark>/IR registration</mark>
14%	5.	Account for changes between fractions

Adapt-a-thon

Texas Hold 'em Invitational

Promote a more open dialog about the theory and implementation of commercially available tools for adaptive radiotherapy.

Déséhopcorbahstfaret beserhos iRISR-licke upbesstiannel toehassognigitechtissanlial lögnits of these tools!

The Goals

Adapt-a-thon

TEXAS HOLD 'EM INVITATIONAL

- Data Management
- Image Registration
- Contours and Dose
- Display and Analysis
- Adaptive Planning

Adapt-a-thon

TEXAS HOLD 'EM INVITATIONAL

Data Management	Image Registration	Contours and Dose	Display and Analysis	Adaptive Planning
DICOM Import	Rigid Registration	Manual Contouring	Evaluate Transform	Dose on any Dataset
DICOM Export	Deformable Registration	Automated Contouring	Display ROI changes	Planning on any dataset
"Unlimited" Datasets	Multimodality Data	Contour Propagation	Display Dose / DVH changes	Optimize over other dose
Manage 4-D Data	Limited FOV	Dose Mapping	Display Image Differences	Response Assessment
Manage 5-D Data	Constraints and Penalities	Dose Accumulation	4D / 5D Display	Decision Support
Manage Approvals	Calculate "Inverse"	Biological Dose Summing	Quantitative Metrics	Workflow Automation
Remote Access	Missing / New "Objects"	Dose Metrics	Reporting Tools	Integration w/ Delivery

Adapt-a-thon

Three common cases for demonstrations!

Clinical data

Prostate **Clinical data**

AAPM Task Group No. 132

Use of Image Registration and Fusion Algorithms and Techniques in Radiotherapy: Report of the AAPM Radiation Therapy Committee Task Group No. 132

Immediately after
this session, in this
Room (TU-B-19A-1)

