

Disclosure

• Varian's ProBeam user

Goals

- To learn about typical components of IMPT delivery system
- To understand various potential limitations in treatment delivery and treatment planning

Scripps Proton Therapy Center Layout

Current Modulation

Vertical Deflector Transmission curve

O ProNo	ova	Cyclotrons for Hadron Therapy				ру	Ψ
Machine	Man'f	Туре	Energy	Size	Power	Intensity	Peak B field
C230	IBA, Also Sumitomo	NC Iso	230 MeV	220 t 4.3 m	320 kW	Up to 300 nA CW	Up to 2.2 T
SC Proton Cyclotron	Varian	SC Iso	250 MeV	90 t 3.1 m	155 kW	Up to 800 nA CW	< 4 T
IUCF Main stage	Indiana University	NC Iso	208 MeV	2,000 T > 9 m	900 kW	Up to 500 nA CW	< 2.25 T
S250	MEVION	SC Syn	250 MeV	20 T 1.8 m	- ?	500 Hz period	~ 9 T
S2C2	IBA	SC Syn	230 MeV	<50 T 2.5 m	- ?	1 kHz period	~ 6.56 T
C400	IBA	SC Iso Light Ion	250 MeV (p) 400 MeV/u	700 T 6.6 m	200 kW for RF	8 nA	2.5 T - 4.5 T
Iso = Isochronous Syn = Synchrocyclotron							
3 - August - 2013 AAPM Proton Symposium Particle Beam Technology – Cyclotrons Laddie (Vladimir) Derenchuk							

What is a Synchrotron?

AAPM 2010 Abstract

What is the maximum number of beam spots deliverable within one gating window for synchrotron based scanning proton beam therapy of lung cancer?

Yoshikazu Tsunashima¹, Sastry Vedam², Lei Dong², Masumi Umezawa³, Xiaodong Zhang², Peter Balter² and Radhe Mohan²

1. Graduate School of Biomedical Sciences, University of Texas at Houston 2. Department of Radiation Physics, MD Anderson Cancer Center 3. Hitachi Ltd., Energy and Environmental Systems Laboratory

MDAnderson Cancer Center aking Cancer History

HITACHI nspire the Next

Number of spots (average) delivered within one expiration phase from simulation results vs. Number of spots from treatment plan

Number of spots for each layer in 10 treatment pla

Maximum number of spots/layer whose plot within σ from the line 85 spots 30 %DC threshold 83 spots 20 %DC threshold 77 spots 10 %DC threshold

- On-demand acceleration
- ~ 0.1 MeV (94 energies)
- Modulated @ 1000 Hz;
- ~ 2 seconds

Scripps A World of Healing Beam Steering by Magnetic Fields

- Dipoles: for bending the beam
- Quadruples: focusing the beam
- Vacuum pumps to keep beamline under very high level of vacuum (think about outer space)
- Beam profile monitors to measure beam along the central tube

Beam Delivery System

- Nozzle
 - Lateral scanning system
 - Position monitoring system
 - Dose monitoring system
 - Accessory holders (range shifter and aperture)
 - Imaging (optional)

Scanning System Challenges

- Power requirements
 - Faster scans and large fields require high power (>1000A)
 - Raster vs. Spot Scanning
- High precision is required for magnetic field
- Gantry dependence
- Position monitoring at low dose rate
- Preferred fast scan direction to minimize breathing motion

Variations in proton scanned beam dose delivery due to uncertainties in magnetic beam steering

Stephen Peterson and Jerimy Polf et al.

Analytical formula between magnet strength and lateral spot position Magnetic steering beam position relationship: physics Find the function mapping magnet strength to beam positionage f(By) Lorentz and centripetal force $r_{Y mag} = \frac{mv}{2}$ mv^2 $F = qvB_Y =$ r_{Ym} Relativity effect 1 θ, $E = \gamma m_o c^2,$ where $\gamma =$ $\sqrt{1 - (v/c)}$ 1 v = c1 B $(1 + E/m_o c^2)$ Lymag $m = \gamma m_o$ Relativistic mass

Position Monitor

 Multi Strip Ionization Chamber (MSIC) or two-dimensional multi-wire system is used to monitor spot position and spot shape

Minimum MU per Spot

- To accurately measure spot position and shape
- Delayed charge delay of the beam termination
- Beamline activation at high energy
- (MDACC) Upper limit: Safety consideration – limit the maximum dose per spot

Impact of Scan Direction

MDAnderson Cancer Center

Experiment

Beam delivery

- Field
- Spot spacing
- Number of spot
 Spot duration time
- Spot duration time
- One layer time
 Scan directions

Tsunashima et al.

10cm x10cm field

8mm (x and y direction) 13 x 13=169 spots (≡one painting) 7ms/spot (4ms delivery+3ms moving) 169x7ms=1.2 s (one painting) Orthogonal and Parallel to Motion

Results		Phase-				
Orthogonal scan	T=3 s ≺	Phase	=	Ξ	=	
	Painting x1	Phase-	A=3mm	A=5mm	A=10mm	A=20mm
Phantom motion	T=3s ≺ Painting x2	Phase	Ч		Ч	8
10x10 cm ² field	Familing AZ		A=3mm	A=5mm	A=10mm	A=20mm
Spot spacing 8mm 169 spots		Phase-				
1.18 s for delivery	T=3s ≺) Phase-	-	-	-	\equiv
No repainting	Painting x4					
Tsunashima et al.		l				

Results		Phase-				
Parallel scan	T=3 s ≺) Phase+	\equiv	\equiv	\equiv	\leq
	Painting x1					
		Phase-	A=3mm	A=5mm	A=10mm	A=20mm
Phantom motion	T=3 s ≺)) Phase+	_	_	=	_
Reference:	Painting x2					
10x10 cm ² field		l				
Spot spacing 8mm		C Phase-	A=3mm	A=5mm	A=10mm	A=20mm
169 spots						
1.18 s for delivery	T 2 a	Dhaaaa				
No repainting	Painting x4	Phase+				
Tsunashima et al.		l				

Conclusions

We determined the dependence of the maximum σ that obtains comparable target coverage and sparing of OARs to advanced photon techniques for three clinical cases. σ must be ≤ 4 mm for the head and neck cancer, ≤ 3 mm for the prostate cancer and ≤ 6 mm for the malignant pleural mesothelioma. Furthermore, the spot spacing was optimized for

Summary: Why is PBS Possible Today?

- Better power supply for magnets (dipole; quadruple; fast scanning coils)
- More advanced accelerator technology
 - More efficient accelerator
 - Better beam optics (smaller spots)
 - Fast energy change and current modulation

LD 04/

- Automatic beam tuning and control system
- Better and faster electronic circuits