

Outline 1. Dual-probe fluorescence imaging for lymph node cancer detection 2. Cerenkov Imaging in Radiation Therapy 3. Hybrid Molecular imaging

Example 1: Detecting lymph node involvement

with

Exogenous molecular imaging

LYMPH NODE DETECTION

Lymphoscintigraphy Methylene Blue procedure

Procedures today remove nodes for the purpose of ass
Delay between surgery and lymph node analysis
High morbidity (axillary nodes)

EPIDERMAL GROWTH FACTOR RECEPTOR TARGETED FLUORESCENT IMAGING

DUAL REPORTER COMPARTMENT MODEL Targeted Tracer Targeted Signal from Lymph Node Untargeted Tracer argeted Signal from Lymph Node F_1 F F ≽ 4 $\frac{dC_{f}}{dL} = F_{I}C_{I} - (F_{I} + k_{3})C_{f} + k_{4}C_{b}$ $\frac{dC_r}{dt} = F_l C_l - F_l C_f$ $C_{\mathbf{r}}(t) = C_{\mathbf{r}}(t) + F_l C_{\mathbf{r}}(t) * e^{-\frac{k}{1+BP}}$ $\frac{dC_b}{dt} = k_3 C_f - k_4 C_b$ $BP = k_3/k_4$

Tichauer et al., Phys Med Biol 2012

LYMPH NODE METASTASIS CANCER MODEL

Industry/Academic Partnership for Targeted Fluorescent Receptor

Affibody Robe COR – Dartmouth

High production of Cerenkov in EBRT Production of Cerenkov in EBRT Production of Determine Production Productin Production Production Productin

Production is largely flat with energy > 1 MeV

First imaging of Čerenkov emission from human tissue

Whole breast radiotherapy with dynamic field. Real time monitoring possible.

Jarvis et al, IJROBP (2014)

Dynamic beam field monitoring

Options for Gated Cameras									
Camera Model	Sensor Type	Cost	Pixel Size (μm)	Resolution (pixels)	Gain	Gate Time	QE of Detector @ 700nm	QE of Intensifier @ 700 nm	Max Frame Rate
Basler	CMOS	\$550	5.3 x 5.3	1280 x 1024	1	30 µs	42%	N/A	60
Canon EOS Rebel T3i	CMOS	\$600	4.3 x 4.3	5184 x 3456	1	N/A	Not Listed	N/A	3.7
Apogee Alta F8300	CCD	\$3k	5.4 x 5.4	3326 x 2504	1	N/A	42%	N/A	0.1
PIMAX3 1024i	ICCD	\$55k	12.8 x 12.8	1024 x 1024	5	2 ns	27%	4%	27
PIMAX4 1024i	ICCD	\$60k	12.8 x 12.9	1024 x 1024	21.54	2 ns	27%	25%	27
PIMAX4 512EM	EM-ICCD	\$85k	16.0 x 16.0	512 x 512	10,000	2 ns	46%	25%	30
Jacqueline Andreozzi, AAPM talk (Thursday AM)									

(a) The central axis curve for the AP-PA treatment is plotted. (b) The corresponding lateral curves at d_{max} , 50 cm, and at the isocenter (100 mm) are shown.

Čerenkoscopy of dog oral tumor Radiation Treatment Lower 1 Cerenkov video (room lights on) Cerenkov video

assurance plays a fundamental role in n treatment of cancer: while modern les offer the ability to deliver precise doses of to turnour tissue, this advantage is lost if the nt is not stable and accurate. <u>Requira and</u> calibration of radiotherapy apparatus is thus an a procedure for hoseitals dure for ho

rld.com "New a , Nov. 19, 2008

