PET-based treatment verification: status and perspectives

Katia Parodi, Ph.D.
Ludwig-Maximilians University, Munich, Germany
Heidelberg University Hospital, Heidelberg, Germany

ESTRO-AAPM Joint Symposium
Imaging for Proton Treatment Planning and Guidance

Austin, 2014.07.23

The quest for precision

The finite range with the characteristic “Bragg-peak”

... increased sensitivity to uncertainties

Range uncertainties

Tx planning uncertainties
- CT-range calibration
- Imaging artefacts
- Calculation models

Delivery uncertainties
- Inter- and intra-fractional anatomical changes
The quest for imaging

Obtain knowledge of:
- patient position and anatomy
- Inter- and intra-fractional motion
- In-vivo range
- (deposited dose)

Imaging of secondary radiation from nuclear reactions
Transmission imaging (e.g., WE-D-BRF-4)

In-vivo PET-based verification

\[A(r) \neq D(r) \]

Tradeoff between better spatial correlation (\(^{12}\text{C} \)) and stronger signal (\(p \))
Dose-guidance from comparison of measured vs expected \(\beta^+ \)-activity

The possible workflows

PET is a dynamic process, depending on time of irradiation and acquisition
Clinical implementation of in-beam PET

In-beam PET
- Patient in treatment position
- Detection of short lived emitters (15O)
- No prolongation of treatment session
- Morphological information from planning CT
 - Limited-angle detection
 - High integration costs

Installation at GSI Darmstadt used clinically for scanned 14C ions

Enghardt, … Parodi … Nucl Instrum Meth A 2004; Parodi et al Nucl Instrum Meth A 2005

Clinical workflow of ibPET@GSI

Once

> 400 patients

Verification of
- Beam range
- Lateral position

In case of deviation
- Timely reaction

Enghardt, … Parodi … Nucl Instrum Meth A 2004; Parodi et al Nucl Instrum Meth A 2005

Clinical results of ibPET@GSI

In-vivo validation of CT-range calibration curve

Prediction

1998

Experimental refinement of R(HU) calibration in tissue samples

Measurement

Eliminate or reduce systematic error

Clinical results of ibPET@GSI

In-vivo indicator of deviations in actual dose application

Parodi Ph.D. Thesis TU Dresden 2004; Enghardt, Parodi... Radiother Oncol 2004

Clinical results of ibPET@GSI

Indirect estimation of 12C dose deviation from in-beam PET

Dose recalculation

Hypothesis on the reason for the deviation from the treatment plan

Interactive CT manipulation

CT after PET findings

Parodi Ph.D. Thesis TU Dresden 2004; Enghardt, Parodi... Radiother Oncol 2004

Clinical implementation of offline PET/CT

Offline PET/CT
- Full ring scanner
- Comparably low cost
- CT-image for co-registration (extra dose)
- Patient re-positioning (if not using shuttle)
- ~ 5–20 min time delay from irradiation to imaging (washout, counting statistics)
- Long scan time (~ 20–30 min)

Parodi et al, IJRBP 2007; Parodi et al, IEEE CR 2011; Bauer,... Parodi, Radiother Oncol 2013
Clinical experience of offline PET/CT 12C @HIT

- Enhanced distal activity edge due to 12C projectile fragments
- Reliable extraction of range information despite washout (brain) and motion (liver, mitigated by belly compressor)

Clinical experience of offline PET/CT 12C @HIT

- Suspected mispositioning supported by new simulation on CT from PET/CT
- New treatment plan was performed to improve robustness against variations

Range difference map in BEV

12C \sim 17 min
\sim 13 min
30 min

Clinical experience of offline PET/CT p @ MGH/HIT

Reliable range in bony structures
Challenges from knowledge of biological washout and elemental tissue composition

Shen, …, to be published
Clinical implementation of in-room PET

In-room PET
- Patient in treatment position
- Full ring scanner possible
- Few minutes acquisition sufficient
- Patient throughput
- Co-registration uncertainties if moving table

Clinical results of in-room PET@NCC

Experience from dual-head in-room PET at NCC Kashiwa (p)
- 200 s acquisition after end of irradiation found sufficient for imaging
- Detection of inter-fractional delivery / anatomy changes

Clinical results of in-room PET@NCC

Replanning triggered by PET finding

\[R_{max} (plan(b) - plan(a)) \]
- \(-21.1\) mmWEL: port1
- \(-15.0\) mmWEL: port2
- \(-17.2\) mmWEL: port3

Nishio et al, IJROBP 2010; Courtesy of T. Nishio, NCC Kashiwa
Experience from dual-head in-room PET at NCC Kashiwa (p)
- 200 s acquisition after end of irradiation found sufficient for imaging
- Detection of inter-fractional delivery / anatomy changes

Assessment of reproducibility (daily activity compared to reference meas.)
- Small planar system optimised for animal imaging, limited FOV
- No acquisition possible during beam-on time

Nishio et al, IJROBP 2010; Courtesy of T. Nishio, NCC Kashiwa

Experience from full-ring in-room PET at MGH (p)
- 5 min measurement started 2 min after irradiation end
- Range agreement mostly within ±3 mm (4 - 11 mm rms)
- ~ 2 mm co-registration errors despite robotic couch and radioactive markers
- Limited bore of scanner (only head and pediatric cases)

Zhou et al PMB 2011, Min et al IJROBP 2013

Clinical results of in-room PET@NCC

Clinical results of in-room PET@MGH

R&D challenges

All the reported experiences suggest feasibility and potential value

Remaining limitations of PET-based verification
- Inaccurate prediction of activity distributions due to insufficient knowledge of nuclear reaction cross sections and tissue composition
- Degradation of activity distributions by washout and organ motion
- Time-consuming evaluation requiring well trained staff
- Imaging performances and integration costs for on-site implementations

Ongoing efforts to ...
Modeling of proton PET prediction

- Improve MC prediction via experimental based adjustment of β^+ cross sections
- Speed up calculation with analytical models using same TPS pencil beam algorithms
- Overcome limitations of CT-based tissue classification via MRI or DECT

Modeling of activity washout

- Improve washout modeling on the basis of animal studies

4D PET-based verification

- Phantom and clinical studies on detectability of range changes and interplay effects in the presence of motion

Courtesy G. El Fakhri, PhD
Automated range assessment

- Robust automated range assessment from PET distributions (meas. vs calc., meas. vs meas.), % fall-off, shift analysis, volumetric analysis

Hardware improvements: dual head solutions

- Detector developments towards ultra-fast Time-of-Flight (TOF) in-beam PET

Hardware improvements: full ring solutions

- Prototype small bore PET/CT scanner just started clinical study at MGH
- Large scale in-beam full ring openPET scanner prototype being developed and tested with stable and radioactive ion beams at NIRS
Hardware improvements: towards hybrid detectors?

- Hybrid detector systems to detect
 - prompt γ rays during irradiation
 - delayed γ rays (from β⁺ emitters) during irradiation

Conclusions and outlook

- Clinical investigations of PET monitoring being reported for different centers with different ions and delivery systems, as well as different scanners (mostly adapted from nuclear medicine or small animal imaging)

- Despite promising results (+3mm range verification accuracy in favorable H&N locations), several issues remain (counting statistics, washout, co-registration and motion in extra-cranial sites, …)

- Several groups are pursuing methodological improvements, but major advancement being expected by next generation in-beam PET scanners specifically optimized for this application

- Although many promising new techniques are on the horizon, PET could still play a role due to its intrinsic 3D, molecular imaging capabilities when properly used to detect the major ¹⁵O contribution in the tumour

⇒ hybrid imaging approaches e.g., combining PET with prompt γ?

Acknowledgements

The MC-modeling and in-vivo imaging research group at HIT / UKL-HD
Colleagues at HIT / UKL-HD
J. Debus, S.E. Combs (now TUM) and team
New team at LMU
Collaborators & contributors
G. Baroni et al, Polimi
D.R.Schaart et al, TUD
W. Enghardt et al, Oncoray
T. Bortfeld et al, MGH
T. Nishio et al, NHCC
T. Yamaya et al, NIRS
G. El Fakhri et al, MGH
Funding
FP7 ENVISION
BMBF SPARTA
DFG (MP, HICT, KFO)
Accuracy of in-beam PET range verification?

"In-silico" trial on patient treated at GSI (Head&Neck)

<table>
<thead>
<tr>
<th>Planned dose</th>
<th>Reference PET</th>
<th>PET for increased range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overrange detection</td>
<td>Specificity 96 ± 2 %</td>
<td>Specificity 95 ± 2 %</td>
</tr>
<tr>
<td>Underrange detection</td>
<td>Sensitivity 91 ± 3 %</td>
<td>Sensitivity 92 ± 3 %</td>
</tr>
</tbody>
</table>

Fiedler et al PMB 2010

Outlook: image quality

- Offline PET imaging suffers from several limitations
- Optimizing imaging parameters can yield significant improvements

Ph.D. Thesis C. Kurz; Kurz, ...,. Conti, Parodi, presented at IEEE MIC 2013 Seoul

Novel PET systems for in-room imaging

Dual-head scanner mounted on rotating gantry in Kashiwa, Japan

- Distance between two opposing detector heads of 30 - 100 cm
- Isocentric rotating of 0 - 360 deg.
- Position resolution of 1.6 - 2.1 mm FWHM
- Detection area of 164.8 × 167.0 mm²

- Planar imaging starting immediately after end of irradiation (cyclotron)
- A/r ≠ D/r: Daily measurement compared to reference activity (reproducibility check)
- > 50 patients of H&N, Liver, Lung, Prostate and Brain from 2007/10

Similar finding as for GSI (e.g., detection of anatomical changes)

- Courtesy of T. Nishio NCC-Kashiwa, Nishio et al IJROBP 2010