Imaging for Proton Treatment Planning and Verification

Jon J. Kruse
Mayo Clinic Dept. of Radiation Oncology
Rochester, MN

Acknowledgements

• T.J. Whitaker; Mayo Clinic
• John Mullins; Mayo Clinic
• Hiroki Shirato, Kikuo Umegaki; Hokkaido University
• Mark Pankuch; ProCure
• Alessandra Bolsi, Tony Lomax; PSI
• Sung Park; McLaren
• Jonathon Farr; St. Jude
• Lei Dong; Scripps

Uncertainties in Proton Therapy

• Localization Uncertainty
 * Analogous to x-ray treatment geometric uncertainties
 * Acts orthogonal to treatment beam direction
 * Countered with daily image guidance

• Range Uncertainty
 * Analogous to x-ray treatment heterogeneity uncertainties
 * Acts parallel to treatment beam direction
 * Determined from treatment planning CT scan
CT Simulation for Proton Therapy

- 3D (or 4D) model of the patient for geometric treatment planning
- Reference images for daily treatment guidance
- Substrate for basic dose calculation
- Material composition information for heterogeneity corrections
 - Relative electron density
 - Proton stopping power

Photon Planning: Relative Electron Density

- Scan commercial phantom with known RED
- Measure HU in scan
- Enter HU-RED curve in photon planning system

Proton Planning: Stopping Power

- Proton stopping power comes from Bethe-Bloch equation:
 \[S = \frac{4\pi n e^2}{m_e c^2} \left(\frac{e^2}{4\pi e_0} \right)^2 \cdot \left[\ln \left(\frac{2m_e c^2 \beta^2}{I} \right) - \beta^2 \right] \]
- \(n \) is electron density of the medium
- \(I \) is excitation energy of the medium
- HU-SP degeneracy
- Phantom materials are not like human tissues
- Stoichiometric Calibration Process
Stoichiometric Calibration

1. Measure HU of materials with known RED

 - Plugs have well known RED values
 - Elemental composition not tissue equivalent
 - Typically scan one plug at a time in center of phantom
 - Use fixed, clinical CT protocol

2. Parameterize CT Scanner by Fitting HUs

 - Z and \hat{Z} are material properties for photoelectric and Compton
 - Scanner parameters:
 * A: photoelectric
 * B: Compton
 * C: Klein-Nishina

3. Calculate Predicted HU for ICRU Tissues

 - \hat{Z} and $\hat{\hat{Z}}$ can be calculated for tissues with physical properties published by ICRU
 - Scanner parameters:
 * A: photoelectric
 * B: Compton
 * C: Klein-Nishina
Stoichiometric Calibration

4. Calculate Relative Stopping Power for Reference Tissues

\[S_p = \rho_p \frac{\ln \left(\frac{2m_e e^2 \beta^2}{U_{\text{max}}(1 - \beta^2)} - \beta^2 \right)}{\ln \left(\frac{2m_e e^2 \beta^2}{U_{\text{water}}(1 - \beta^2)} - \beta^2 \right)} \]

- I is ionization potential for material
- I is assumed to be ~75 eV for water
- More uncertainty in I for other materials

Schneider et al., PMB 1996

Stoichiometric Calibration

5. Plot Relative Stopping Power vs. Calc. CT

- Nominally fit to bilinear curve
- More segments used in soft tissue region to cover tissues with differing H composition

Schneider et al., PMB 1996

Uncertainties in HU to SP

- Degeneracy in SP values for tissues with same HU
- HU value uncertainty
 - Technique
 - Position in scanner
 - Artifact
- Uncertainties in mean excitation value
- Variations in human tissue composition
- Expected Range Uncertainty: ~3.5% + 1 mm
Potential Solutions for Better Range Accuracy

- **Dual Energy CT**
 - Potential to better characterize patient composition and stopping power

- **MVCT**
 - Reduction in scattering artifact

- **Proton CT**
 - Traverse the patient with a proton beam and measure residual energy at exit
 - Direct map of stopping power

Proton vs Photon Treatment Localization

- In the past 15 years IGRT for x-ray therapy has evolved and matured
 - EPID
 - kV Radiographic systems
 - CBCT
 - MR Linacs

- Proton therapy IGRT has lagged behind
 - Market size
 - Different needs, priorities in proton therapy

Proton IGRT Considerations

- Delivery system constraints
 - Gantry geometry

- Efficiency
 - Proton treatment rooms are expensive
 - Precise setup critical – protons more sensitive to changes in volume, pose

- Targeting goals
 - Anatomy targeting for protons different than for photons
Photons: Radiographic Localization

- Suitable for when bony anatomy is a good surrogate for target tissue, or when fiducials are placed
- Gantry mounted
 - MV EPID
 - kV Systems
- Fixed position imagers
 - BrainLab ExacTrac
 - Hokkaido RT-RT fluoroscopic system

Gantry Mounted Imagers

- Use of treatment beam for imaging
 - Imaging during treatment
 - BEV imaging – Important ‘Sanity Check’ on patient setup, other IGRT procedures
- Rotating gantry facilitates CBCT
BEV Imaging in Protons

- Small spot size important for scanning proton facilities
- X-ray tube in a scanning nozzle introduces atmospheric drift length; larger spot size
- Can’t image during proton treatment

Cone-beam Computed Tomography, Real-time tumor-monitoring, and gated proton spot-scanning beam therapy.

High precision positioning system (2D, 3D, and 4D)

- 2D, 3D positioning based on bony anatomy and soft tissue matching (radiography, CBCT)
- 4D positioning (real-time tumor-monitoring system)
- Verification
 - Fiducial migration (radiography, CBCT)
 - Inter-fractional variation of proton range (CBCT)

Gold marker

3 + 1 dimensional positioning (real-time tumor-monitoring system, Hokkaido University)
Limited Gantry Proton Systems

- Proton gantries are large and expensive
- Limited number of beam angles gives adequate plan quality for a number of treatment sites
- Lose the gantry support structure for imaging equipment

ProCure Fixed Beam Imaging

- Fast Intra-Tx imaging at any gantry/couch position
- Fluoroscopy capable
- Large FOV
- No moving parts – stable imaging isocenter
- 6 DOF matching software

Mayo Clinic Half Gantry

- Image from ProCure Website
Mayo Clinic Half Gantry

- Limited to two imaging angles
- FOV is 30 cm x 30 cm at isocenter – may not see center of tumor volume for non-isocentric plans

ProTom Robotic C-Arm

- Rotates to acquire radiographic projections for setup on 2D images
- Robotic arm allows for mobile imaging isocenter
- CBCT capable

ProTom Robotic C-Arm

- Imager Retracts to avoid interference with therapy nozzle, rotating couch

Courtesy of Sung Park
Mayo Clinic Half Gantry

- Limited to two imaging angles
- FOV is 30 cm x 30 cm at isocenter – may not see center of tumor volume for non-isocentric plans
- Not CBCT capable

Utility of CBCT for Protons

- Bony anatomy is often a poor surrogate for target/critical anatomy
- Fiducials or CT localization required in cases where we expect movement of soft tissues relative to radiographically evident bony anatomy
- Photons: Place target tissue at isocenter, don't worry about ‘upstream’ bony anatomy
- Protons: ??

CT Localization for Protons: Pelvis

- Change in position of bony anatomy alters dose distribution
- CT localization may be of limited use
CT Localization for Protons: Lung

- Change in position of rib causes minimal disturbance of dose distribution
- CT localization of lung tumors desirable for proton therapy

CBCT for Lung?

- Mayo proton facilities will be scanning beam only
- Treatments of mobile tumors will probably require gating/breath hold
- Free-Breathing CBCT imaging a poor reference for gated/breath held treatment
- Gated/breath held CBCT not impossible, but not easy

CBCT for Adaptive Protocols

- Proton dose calculation is extremely sensitive to CT number accuracy
- CT number accuracy / consistency not generally a priority in CBCT
- Increased scatter relative to helical CT degrades imaging performance
Helical/CBCT Phantom Images

Images Courtesy of T.J. Whitaker

CT on Rails

- Robot moves patient to imaging isocenter
- CT translates over patient for imaging
- Robot moves patient back to treatment isocenter while CT registration is performed
- Helical CT image quality
 - Images for adaptive imaging
- Fast image acquisition
- 4D imaging capability
Imaging Outside Treatment Room

• To increase throughput some imaging and treatment preparation has been moved outside the treatment room
• Patients should not be in the treatment room unless they're being aligned for treatment or being treated
• Various approaches
 • Immobilization/treatment preparation
 • Treatment localization
 • Imaging for adaptive planning protocols

Treatment Preparation

• Some treatment sites require difficult/time consuming preparation and immobilization
 • CSI
 • Brain cases – fluid in surgical sites
 • Head and Neck – changes in mask fit
• Immobilize and image patient outside treatment room to verify that patient pose is correct

Treatment Preparation Outside Tx Room

• 2 rooms with robotic positioners, lasers, and fixed orthogonal imagers
• Patient is immobilized and imaged
• Images are compared to DRRs to assess patient pose, not position
• Patient immobilization can be adjusted and re-imaged with little time pressure
• When pose is correct, transported to Tx room
Treatment Preparation Outside Tx Room

- Anesthesia Suite
- Imaging Rooms
- Beam Matched Tx Rooms

Treatment Localization Outside Room

- In some centers treatment localization is performed outside treatment room
 - Less work in treatment room
 - Access to various imaging modalities
- Imaging isocenter in one room tied to treatment isocenter in another
 - Careful, multiroom QA protocols
 - Precise patient transport systems
Remote patient positioning at PSI

1. Patient preparation: 5 minutes
2. Patient positioning checks: 5 minutes minimum
3. Transfer to treatment room: 2+2 minutes
4. Treatment delivery: 5-30 minutes
5. Transfer out of treatment room: 2+2 minutes

Patient Transporter

- Twin system for parallel operation
- Operable by one person
- Guided by optical tracks
- Connecting various predefined locations:
 - Preparation room
 - Anesthesia room
 - CT room
 - Gantry room
- Table coupling at CT and Gantry
- Reliable operation:
 - Increased comfort for patient
 - Decreased physical work for staff

Patient positioning: Remote Positioning at CT

Daily pre-treatment positioning at CT

- Horizontal and vertical scouts
- Compared against reference scouts (from treatment planning CT series)
- No axial CT scan acquired
- Online matching of anatomical landmarks:
 - Semi-automatically and/or manually
 - Offsets for table coordinates at Gantry (translations only)
- Linked to Gantry Control System (via RBB® interface)
- Software developed in-house ("ppp")
CT Gurney

Load Position

Handoff in the treatment room
Use of Fiducials

- Fiducial markers used to great effect in photon therapy in place of volumetric imaging
- Proton specific concerns with use of fiducials
 - CT artifact
 - Dose shadowing

CT Artifact from Fiducials

Huang et al., PMB 56 (2011) 5287

Dose Perturbations from Fiducials

Huang et al., PMB 56 (2011) 5287
Summary

- Dose-Volume uncertainties in proton therapy have some sources common to photon therapies, some unique
- CT simulation protocols require strict calibration and control
- Treatment localization imaging is maturing in proton therapy, responding to unique needs of the modality