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Filtered Backprojection (FBP)

Analytical

final image
formula

Textbooks by Jiang Hsieh, or by Kak

A model in FBP Reconstruction?

Beer-Lambert Law:

Ensemble Average is needed:

Acquire repeated “ “ “ “
measurements J Laid E e ;.
1 2 3 n

Perform ensemble P\\‘ — [0

average Extract mean I
signal values

A model in FBP Reconstruction

In_FBP Reconstruction: We
use one sample to represent
the mean, since it is harmful
and time-consuming to obtain
a true ensemble average.

Data Model in FBP:

Use data as if there are no
photon statistical fluctuations
in data acquisition!
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Advice from a wise man @

“‘Remember that all models
are wrong; the practical
question is how wrong do
they have to be to not be
useful.”

George E. P. Box
(1919-2013)

Box, G. E. P, and Draper, N. R., (1987), Empirical Model Building and Response
Surfaces, John Wiley & Sons, New York, p. 74

How wrong is the model used in FBP? @

projection data FBP recon FBP recon

(10+entry photons)

high noise

The non-fluctuation model is quite good except for
very low exposure/dose levels!

Outline @

Model based Image Reconstruction: Statistical Image
Reconstruction (SIR)
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Problem statement @

How should we incorporate the actual
photon fluctuations into the CT image
reconstruction?

For simplicity, let's assume a perfect photon
counting detector is used (a model again,
sorry!).

Poisson data model for low exposures @

We cannot perform repeated measurements to obtain
the experimental mean, but what else do we know
about the measurement?

Probability!

Inverse problem

What is the probability to estimate one attenuation
distribution of an image object given that the measured

data set in your hand?

Bayesian PN} mP P(m{N}) =

rule

Image Reconstruction problem statement:

Seek for an estimation to maximize the probability!
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Maximum Likelihood (ML) method @

Maximizing the Log-likelihood function:
= argmax[In P(ngx, E) [{N 1]

M
=argmax[é (- N,+N,InN, - InN,) +InP(m)]
m j=1

Under the following quadratic approximation:
.1
m= argmm[E(j/ - A D - A+ R(7)

D =diag{N,,N,,"-,N,,

Data model and forward projection @

d d
Ods, 5, E) = Ods, & mB, (% E)
0 0 j

d
=a m Qds,B,(%.E) = 4,m =[AT},
J 0 J

Same strategy as in FBP: Acquire a single sample to
represent the mean since it is harmful and time-

consuming to obtain the experimental mean.

Refined Data Model in Statistical Model Based
Iterative Reconstruction: Statistical fluctuations in
data acquisition are considered in data usage!

Alternating image update and denoising @

m=arg min[%@ - AW D(35 - Amy+ [ R(7)

Data consistency driven image update:
V.., =M +PA" D - AT)

Denoising:

Vior 1 +/ R(PYY

Combettes and Wijs, Multiscale Model. Simul., Vol. 4: 1168(2005)
Li Y, Niu K, Tang J, Chen G-H. SPIE Medical Imaging Proceedings, 2014. p.
90330U-U-8.
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Benefits of Statistical Model Based
Iterative Image Reconstruction

Reduce streaks caused by low photon count (high
noise) projection data and reduced noise level

FBP recon

IR w/ stat

Algorithm and Pseudo code: TV Example

Algorithm TV — 8
iy, DO o

While | Au* — f
vEEl = kg

+ g (i + )

df )+ (0, = b+ (B, — B

Li Y, Niu K, Tang J, Chen G-H. SPIE Medical Imaging Proceedings, 2014. p.
90330U-U-8

Benefit of SIR: Clinical Case

This Abdomen/Pevis CT scan covers ~40 cm in the z direction with a 0.7 mSv effective
dose. The BMI of this patient is 19.4.
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New Challenges:
different 3D Noise Power Spectra

FBP (f, =-0.83)

Li, Tang, and Chen, *Statistical Model Based lterative Reconstruction (MBIR) in clinical CT
systems: Experimental assessment of noise performance,” Med. Phys. (2014)

Joint dependence of spatial resolution
on both contrast and radiation dose
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Outline

Model Based Imaging Reconstruction: Prior Image
Constrained Compressed Sensing (PICCS)




Problem statement

Besides statistics, if we know a portion of image, or a
low spatial resolution representation of an image, or
low temporal resolution representation of an image,
or even an image with lower energy spectral fidelity,
can we incorporate this prior images into
reconstruction process?

We define these low resolution images as our prior
image.

Prior Image Constrained Compressed
Sensing (PICCS)

| PiIcCS

mine

Limited view
angle range
problem

Cardiac CT Respiratory
ted CBCT il CT perf
(TRI-PICCS) S perfusion

) G | CT
Time-resolved Cardiac gated asgl?cr:tion
interventional CT CBCT (DR-PICCS)

‘ Few view | Noise/dose
problem reduction

Dual energy CT

“ L@t Ju Fian gl Snll GigerN dlle RIBhy$2008) VYL. 35 p660

PICCS Implementation: Pseudo-Code @

Algorithm PICCS — Reconstruction
u® — uy, D°  [uf! — uy, ul™ — w7, BY ¢
While ||Au* - f||2 > = do

vh u* + ATC(f - Ad

For i=1,2....MN
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Computational challenge in IR @

Projection data: M (~108) (1000x1000x64)
Image data: N (~108) (512x512x400)

Transform between projection and image
domains: MxN

A full iterative reconstruction method solves a
problem of the size of MxN!
(Due to sparsity the actual size is ~1011)

Computation time is long without additional
innovation/reformulation (Veo takes ~ 1 hour for
a typical image volume of 300-400 slices)

Make recon faster: GPU acceleration @

PICCS has special mathematical structures which enable
numerical implementations that enj

fast convergence speed
and high parallelizability.

General purpose graphic cards are used to accelerate the
algorithm:

Clinical CT volumes can be reconstructed within 1~2 minutes

NVIDIA
CuDA

Optimal choice of the PICCS @

weighting parameter

PICCS parameters a & A: Accuracy

—+— Statc structures
- © — Dynamic structures
2

o
o

04 05
Prior image parameter o

Small a = overly smooth Large a = visible prior

Optimum: ain [0.4, 0.5]
Observations:

At larger A, the RRMSE improves (noise level conformity) and the variation between
different a decreases.

Thériault-Lauzier, Tang, and Chen, Med. Phys., 1)




Low spatial resolution prior image @

FBP image projection data y

FBP recon PICCS image x

fl

PICCS recon,

Spatial low-pass
filtering

“G.-H. Chen, J. Tang, and S. Leng,
prior image x, Med. Phys. (2008) Vol. 35 p660

Abdomen CT scan
(PICCS vs State-of-the-Art commerical)

25% dose abdomen/Pelvis CT scan, CTDI=4.5mGy
Recon time: 90 minutes for Veo vs 2 minutes for PICCS

Ultra-low (FBP) Ultra-low (PICCS) |
Effective Dose = 0.3 mSv -

.

Effective Dose = 2.7 mSv

Standard (FBP)

7/21/2014
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Low temporal resolution prior image

00

130ms

260ms 17 Short scan
170 ——
" FBP recon
130ms

234°
Iter 30 g N

'y
&
TRI-PICCS ¢ s )

b 5

Human subject Results

Clinical recon PICCS recon

Human subject studies

Clinical TRI-PICCS

7/21/2014
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4DCBCT: concept and technical challeng

Projection data are retrospectively sorted into several
phase bins, followed by the reconstruction of each phase
bin.

Undersampled projection data within
each phase bin lead to streak artifacts
in the reconstructed images when the
conventional FBP algorithm is used as
in current commercial systems.

PICCS-4DCBCT using a low temporal
resolution prior image

=—— 1

r
Projection } } . .
data | |
| |

FBP
from all views
(time average)

Temporal information
Poor SNR
Streak artifacts

High SNR
No temporal information

Human subject study

phase00

1-minute CBCT scan

RPM based gating

Large tumor on top of the diaphragm
Predominant tumor motion in the Sl direction

7/21/2014
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Low spectral resolution prior image @

Mixed kV data are collected during the acquisition.

All of the data are used to reconstruct a mixed kVp
image with FBP.

The undersampled 80 and 140 kV data are fed into the
PICCS algorithm with the mixed FBP image as a prior
image to reconstruct streak free 80 and 140 kV images.

(High kv ‘

Prior Image‘

View Angle

Szczykutowicz and Chen, Phys. Med. Biol. , Vol. 55:6411-6429(2010)

DE-PICCS: Attenuation Images @

Slew Rate (kV/view)

Szczykutowicz and Chen, Phys. Med. Biol. , Vol. 55:6411-6429(2010)

Outline

Model Based Image Reconstruction: Beyond the original
PICCS
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Norm dependence of PICCS

Prior Image Constrained Compressed Sensing (PICCS)*?2

x=arg min{%(Ax - ) D(Ax - y)

S =8Ny (x- x ) [ +(2-

From 1-norm to Prnmm‘

ael0l pe[L2]

Norm dependence in PICCS

When the selected norm is higher than 1, it has
been suggested that a reweighted scheme may
be applied to approximate the result achieved
with the L1-norm.

Thus, an iterative reweighted technique is also
applied to study the norm dependence of the
performance of PICCS.

1.45:600 (1997)
201(2007)

7(2008)

Reweighted p-norm PICCS

Question to be addressed:

can we replace the 1-norm by a reweighted p-norm
in PICCS?

o [’
kth iteration : al f/\[j,l1 p— || f‘ ”i

Li, Tang, and Chen, Proc. SPIE 8668: 86681M (2013)

7/21/2014
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RMSE vs. view number & p-norm

W/O REWEIGHTED W/ REWEIGHTED
SCHEME SCHEME

14
P norm P norm

The dependence of reconstruction accuracy on view number and
p-norm is decoupled with the reweighted scheme

Li, Tal and Chen, Proc. SPIE 9033:903308 (2014)

Non-convex PICCS (NC-PICCS)

In the NC-PICCS framework, the
£,norm is replaced with a non-
convex norm (£, with p<1)

This may be used for both
PICCS as well as conventional
Ccs

NC-PICCS provides high quality
images with minimal artifacts,
even in cases with very few view
angles

Undersampled

A
(60 v

iraldo, et al., Nonconvex prior image constrain
d simulations on perfusion CT, Vol

Adaptive Prior Image Constrained
Compressed Sensing (APICCS)

In the APICCS framework, ' APICCS
image registration and a

weighted relaxation map

are used

This helps ensure good
correspondence between
the prior image and the
reconstructed image

This is valuable in CBCT
image guided radiation
therapy and other

applications where a Diffe
perfectly co-registered prior ber
Image may not be available

Nett et al, Proc. SPIE 72582: 725803 (2009)
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Deformable Prior Images in Model-based Reconstructio

Initial Imaging Study' Follow-u g Study
oo .
5o g

&

Time Passes
Between Studies

| e—

Motion,
Deformation,
Anatomical Change

dPIRPLE: (deformable) Prior Image Registration Penalized Likelihood Estimation:

«:‘,[1 argmax log L(y; z)— - B H‘Pp (L—=W(A) )‘

St Data Prior Image

Penalty Term

Jointly solve for the image volume (x) and the deformable registration parameters ()
within a statistical reconstruction framework and using sparsity-enforcing penalties

3. H. S
s,” Intl Mg, Fully

dPIRPLE, Lung Nodule Surveillance @

Reconstructions of a Follow-up scan acquisition:

Using 360 Frames

1.25 mAs/Frame Using 20 Frames, 1.25 mAs/frame

Current Anatomy Traditional Model-b PIPLE dPIRPLE
(“Truth”) FBP (Huber

) (Goint registr

Discussion and conclusions

Introduction of statistical model enables improved
CT image reconstruction at low photon counts
scenarios;

Introduction of low resolution prior images together
with statistical models help further improve CT
image reconstruction in a few clinical scenarios;

Image quality assessment should be performed with
care, it is highly recommended to have imaging task
in mind for quality assessment.

16



Model-Based Image Reconstruction @

“Essentially, all models are
wrong; but some are
useful.”

Box, G. E. P, and Draper, N. R., (1987), Empirical Model Building and Response
Surfaces, John Wiley & Sons, New York, p. 424
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Computational challenge in IR

Projection data: M (~108) (1000x1000x64)
Image data: N (~108) (512x512x400)

Transform between projection and image
domains: MxN

A full iterative reconstruction method solves a
problem of the size of MxN!
(Due to sparsity the actual size is ~1011)

Computation time is long without additional
innovation/reformulation (Veo takes a few hours
for a typical image volume of 300-400 slices)

Make recon faster: GPU acceleration @

PICCS has special mathematical structures which enable
numerical implementations that enjoy both:

fast convergence speed
and high parallelizability.

General purpose graphic cards are used to accelerate the
algorithm:

Clinical CT volumes can be reconstructed within 1~2 minutes

NVIDIA
CuDA

PICCS Implementation: more familiar
unconstrained optimization method

Idea: reformulate the constraint into a penalty term
f _ fpéCCS(X) ’_\EAX_ yHQ
O (xp)le 2 [|Axp|?

argmin f,..
T

Data consistency term

a: PICCS parameter a.k.a prior image parameter
A: data consistency parameter

Thériault-Lauzier, Tang, and Chen, Med. Phys., (2011)

7/21/2014
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Prior Knowledge of a Portion of the Image Volurr

Known Components:

Unknown

Concept: Redefine image reconstruction as a
joint reconstruction and registration problem

— E .. — !...

Application to Spine Fixation Interventions @

Localization of Pedicle Screws

Traditional Traditional Known Component
True Volume FBP/Feldkamp = Model-Based/Statistical Reconstruction
(7 /7

containing Known Components,”

Noise Reduction and Streaks Reduction @

19



Iso-dose distribution

Original CT-based plan

30th fx

DVH without adaptive replanning

Cumulative Dose Volume Histogram

—PTV
Spinal cord
Heart
Oesophagus
Trachea
Residue lung

g
>
g
2
S
12}
g
]
2
s
2
]
o

20 30 40 50 70
Dose [Gy] Solid lines: original plan
Dash lines: 10th fx
Dash-dotted lines: 30th fx

DVH with adaptive replanning

Cumulative Dose Volume Histogram

—PTV
Spinal cord
Heart
Oesophagus
Trachea
Residue lung

20 30 40
Dose [Gy] Solid lines: original plan
Dash lines: 10th fx
Dash-dotted lines: 30th fx
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Without re-planning

Original
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Image Slide Show: Cardiac CT

HD750, 100 kVp, 800mA, 0.35s
0.625 mm slice thickness, W/L=700/100 HU

Chest CT

PICCS

HD750, 120 kVp, CTDI,,=0.8 mGy (1/4 SOC dose)
1.25 mm slice thickness, bone+, W/L=1500/-700 HU

21
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PICCS on
GE Discovery CT750 HD

FBP

120 kVp, CTDIy, 5 MGy.
coronal reslice, 0.66x0.66x0.66 mm3, W/L=324/15 HU

PICCS on
Siemens SOMATOM Definition Flash

1 mm slice thickness, W/L=324/15 HU

PICCS on
Siemens SOMATOM Definition Flash

coronal reslice, 0.78x0.78x0.78 mm3, W/L=324/15 HU

22
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PICCS on
Toshiba Aquilion ONE

0.5 mm slice thickness, W/L=330/35 HU

PICCS on
Toshiba Aquilion ONE
¥

BT A
PICCS
coronal reslice, 0.625x0.625x0.625 mm3, W/L=330/35 HU

Retrospective study design

20 human subjects CT colonoscopy cases

Six 100 mm?2 ROIs rer kidney  transverse colon
were measured for | —Zgg=~ 7 3
each case ' '_,,‘ @f’,:

2 from air (inside

colon) rectum fat 1

2 from fat
1 from kidney
1 from liver

Images have been read by radiologists who
confirmed there were no small structure losses

M. Lubner, P. Pickhardt, J. Tang and G.-H. Chen, Radiology. (2011) Vol. 260 p248
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Mean (CT#)

Mean Attenuation Values of FBP vs. DR-PICCS

50 a Liver 4 51 x 7
Kidn
0 Transvers Colon 4 1
+ Rectur
09 | x Fait 1 B ?
Fat2
) PO o oo
= 100 ol B
-150 4 s S o o
3 5 o Ao - e
g 18
g £l - @m
g B
O .50 B
z 2 + x 00
000 R2 =0.99999 | 5~
2] x ]
Intercept 0.14 HU
foso Slope= 0.99966 44 LI
110 T 5 ' L
1100-1050-1000 -950 900 150 160 50 © 50 100 -1100-1050 1000 850 600 150 108 50 © 50 100)
CTHFEP) [HU] maan of CT4(FBP) and GTHPICSS) [HU]
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M. Lubner, P. Pickhardt, J. Tang and G.-H. Chen, Radiology. (2011) Vol. 260 p248

Standard Deviation (noise)

The mean
standard
deviation is
calculated for
each ROl over
20 subjects

DR-PICCS.

Liver Kidney Transverse colon Rectum Fat1 Fat 2

Average noise reduction = 3.1
M. Lubner, P. Pickhardt, J. Tang and G.-H. Chen, Radiology. (2011) Vol. 260 p248

Outline

Prospective low dose: clinical evaluation
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Prospective low dose study @

Common limitations in most current low dose
results:
Lack of solid diagnostic value evaluation
Retrospective study with low dose methods applied on
normal dose scans
Lack of truth in low dose scans
Very limited number of low dose scans

A prospective low dose clinical trial with normal
dose scan as reference and sufficient number of
subjects is needed to validate how low dose
techniques should be utilized to benefit clinical
diagnosis.

Study design — scan and recon

A low-dose CT series was acquired immediately
following the routine standard-dose CT series
(HIPAA-compliant, IRB approved protocol)

Targeted dose reduction 70%-90%

Ultimate goal 500 subjects
Initial results included 45 subjects

Low-dose scans were reconstructed using FBP,
ASiR(40%), Veo, PICCS - for evaluation

Standard-dose scans were reconstructed using
FBP — as reference

P. Pickhardt, M. Lubner, D. Kim, J. Tang, R. Julie, A. Munoz del Rio and G. Chen., AJR. (2012) Vol. 199

Study design - results analysis @

Image reformat

Reconstructed images were reformatted into 2.5 mm
thickness axial and coronal series for review

Quantitative measurements (four 250 mm2 ROIs)
liver, kidney, muscle, and fat

Clinical evaluation
All images were de-identified and randomized with
respect to patients and reconstruction methods.
Two expert radiologists reviewed all low-dose series
first, then reviewed standard-dose series to serve as
clinical reference standard.
The results were pooled together from both readers.
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Mean (CT#): Bland-Altman plots

Bland-Altman analysis on low-dose scans
Bias (HU) Limits (HU)
ASIR 0 0.8
PICCS 0 2.6
Veo 4.3 8.5

]

ACR QC: CT#(water) = 0+7 HU
Uniformity within +5 HU

A100 86 & 50 100 160 200 2so [l & feo_io0 B0 o 760 160 200 250
mean of CT#(FBP) and C1#(A8IF] [HU] mean of CT#{FEP) and CT8(PIGES) (HU]

measurements

M Liver
H Kidney
i Fat

B Muscle

c
]
2
8
S
@
°
e
&
°
c
8
1
@
2
]
4

SOC-FBP  LD-Veo LD-PICCS LD-ASiR  LD-FBP

PICCS ASIR

Veo

Qualitative image quality score
criteria: 5-point scale

0: non-diagnostic

1: severe artifact with low confidence

2: moderate artifact or moderate
diagnostic confidence

3: mild artifact or high confidence

4: well depicted without artifacts
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Subjective image quality scores @

full dose 26% of full dose |

|| Non-diagnostic
image quality

SOC-FBP LD-Veo LD-PICCS

Lesion detection tasks: @

Low contrast lesion detection:
Soft-tissue window: W/L=400/50 HU
Non-calcific detectable organ-based foci >3 mm

High contrast stone detection:
Bone window: W/L=1200/350 HU
Stones >2 mm

Low contrast lesion detection @
performance o

full dose 26% of full dose

SOC-FBP LD-PICCS LD-ASIR LD-FBP

27



7/21/2014

High contrast stone detection
performance

full dose 26% of full dose |

100% 100% 100%

t. 103, 1 (2013);
53/1.4

SOC-FBP  LD-Veo LD-PICCS LD-ASiR LD-FBP
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