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Advanced Reconstruction Methods

Tend to be implicitly defined optimizers of an objective function
e.g., P y)= HF(,U)— yH
DY) =|Au—F(y)|

Enforce similarity between modeled projections of an object estimate and the data
Typically solved through iterative approximation

A =argmin®(z;y)




New Capabilities and New Choices

Fine control over regularization
Various kinds of regularization ~ Which one?
Regularization strength How strong?
More exotic controls Space-variant designs?

Image Properties in Adv. Recon.

Image properties (e.g., noise and spatial resolution) are
Patient-dependent
Contrast-dependent
Position-dependent (nonstationary/space-variant)
Object Noise in Statistical RecipeuictisBP Reconstruction
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Image Properties Prediction

Accurate predictions of image quality will require anatomical knowledge

Increasing availability of anatomical information prior to scanning
Longitudinal studies
disease progression
treatment assessments
Interventional imaging
intraoperative imaging, IGRT
Scout images in CT
3D scouts, PA/lateral scouts
Anatomical atlases (statistical atlases)
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Penalized-Likelihood Reconstruction
y=D{bjexp(—Ax) L(sy)=> v, log¥ (x)-7 (x)

A =argmin®(u;y)=arg min(?L(y; y)+/)’;1TR;1)

Analysis is potentially difficult due implicit definition and nonlinearity
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Noise & Resolution Prediction in PL
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Local Modulation Transfer Functions

Task-Based Detectability Index

Detectability Index for a Non-Prewhitening Observer
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Task-Driven Regularization

Diagnostic Imaging

Prior Knowledge of
Patient Anatomy

Predict/Optimize
Detectability Index

Task-Driven Regularization Design — Optimal Strength

Low Frequency Task
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Task-Driven Regularization — Multiple Locations

Low Frequency Task

Optimal map, log10[A(x,y)]
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Task-Driven Regularization: Space-Variant Penalty

Low Frequency Task d* map, d'(x,y) from spatially varying Amap
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Task-Driven Regularization: Space-Variant Penalty

High Frequency Task d‘ map, d’(x,y) from spatially varying f map
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Task-Based Regularization: Space-Variant Penalty

Asymmetric Task d map, d’(x,y) from spatially varying f map
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Task-Based Regularization: Space-Variant Penalty

Asymmetric Task d“ map, d’(x,y) from spatially varying fmap
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Task-Driven Geometry
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Task-based Optimization of Geometry

Detectability Index (NPW Observer) Predictors of Noise/Resolution for PLE
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Task-Optimizated Trajectory

Standard Circular
Short Scan Trajectory
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Reconstructions from Simulation Studies

Standard Circular Short Scan Trajectory
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Testbench Investigations

Anthropomorphic Head Phantom Modified CBCT Testbench
and Synthetic Vasculature with Tilt Platform
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Ability to step through entire embolization workflow
Initial CT for diagnosis and sizing of coils/stents
Intraoperative flouroscopy for coil embolization
Post-operative C-arm CT for assessment

Testbench Reconstructions

Preoperative Scan 360° Circular Scan
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Conclusions

Presented a general framework for task-driven imaging using advanced
reconstruction methods whereby one can optimize
*Regularization
*Acquisition geometry
Fluence modulation - automatic exposure control, fluence field modulation
Sparse acquisitions
Dose constraints

New paradigm for patient-specific and task-specific imaging
Customization of both acquisition and reconstruction

Lots of unanswered questions (aka Future Work)
Predictors for highly space-variant systems
Optimization using generalized task functions (beyond detectability)
How to quantify performance with prior image techniques (and other advanced methods)




