

I-STAR Laborato Imaging for Surgery, Therapy, and Radiology Ity and Scientists G Gallia

Q Cao S Tilley H Dang A Uneri S Reaungamornrat J Xu

NIH KL2TR001077 (Ford) NIH R21EB014964 (Stayn NIH R01CA127444 (Siewe NIH R01CA112163 (Siewe

Advanced Reconstruction Methods

Tend to be implicitly defined optimizers of an objective function

 $\hat{\mu} = \arg\min \Phi(\mu; y)$

e.g., $\Phi(\mu; y) = \|F(\mu) - y\|$ $\Phi(\mu; y) = \left\| \mathbf{A} \mu - F(y) \right\|$

Enforce similarity between modeled projections of an object estimate and the data Typically solved through iterative approximation

New Capabilities and New Choices Fine control over regularization Various kinds of regularization Which one? How strong? Space-variant designs? Regularization strength More exotic controls

Image Properties in Adv. Recon.						
Image properties (e.g., noise and spatial resolution) are Patient-dependent Contrast-dependent Position-dependent (nonstationary/space-variant)						
Object	Object Noise in Statistical Reconstruction					
For prospective decision making, image property prediction is needed						

What kind of image quality measures can we How do we contend with object-dependence?

Image Properties Prediction

Accurate predictions of image quality will require anatomical knowledge Increasing availability of anatomical information prior to scanning Longitudinal studies

disease progression treatment assessments Interventional imaging intraoperative imaging, IGRT Scout images in CT 3D scouts, PA/lateral scouts

Anatomical atlases (statistical atlases)

Low Exposure 3D Scouts (100 kVp, 6.8 mAs)

-

Penalized-Likelihood Reconstruction					
$\overline{y} = \mathbf{D}\{b\} \exp(-\mathbf{A}\mu) L(\mu; y) = \sum_{i} y_{i} \log \overline{y}_{i}(\mu) - \overline{y}_{i}(\mu)$					
$\hat{\mu} = \arg\min \Phi(\mu; y) = \arg\min \left(-L(\mu; y) + \beta \mu^T \mathbf{R} \mu\right)$					
Analysis is potentially difficult due implicit definition and nonlinearity					
but approximate expressions for local covariance and local point spread function have been derived (Fessler, 1996)					
Regellaritettyeligepelandence					
$ [\operatorname{cov}\{\hat{\mu}\}]_{\mathcal{T}} \approx \underbrace{A^{\dagger}}_{Backprojector} \underbrace{A^{\dagger}}_{Backprojector} \underbrace{A^{\dagger}}_{Backprojector} \underbrace{A^{\dagger}}_{Backprojector} \underbrace{A^{\dagger}}_{Backprojector} \underbrace{A^{\dagger}}_{Covariance} A^$					
$PSI_{\overrightarrow{\mathcal{D}}} \approx \boxed{A^{1}} \underbrace{D(\overline{y}(\mu))}_{A} \underbrace{A^{2}}_{A} \underbrace{\beta \mathbb{R}}_{A} = \boxed{A^{1}} \underbrace{D(\overline{y}(\mu))}_{A} \underbrace{A^{2}}_{A} \underbrace{\beta \mathbb{R}}_{A} \underbrace{A^{2}}_{A} \underbrace{A^{2}$					
Fessler and Rogers. "Spatial resolution properties of penalized-likelihood image recon.: Space-invariant kmographs' Trans. Im. Proc. 5(9), 1996. Stayman and Fessler, "Efficient calculation of resolution and covariance for penalized-likelihood recon. in luliy 3-D SPECT." Trans. Med. Im., 23 (12), 2004.					

Testbench Investigations

Anthropomorphic Head Phantom and Synthetic Vasculature

Ability to step through entire embolization workflow Initial CT for diagnosis and sizing of coils/stents Intraoperative flouroscopy for coil embolization Post-operative C-arm CT for assessment

8

Conclusions

Presented a general framework for task-driven imaging using advanced reconstruction methods whereby one can optimize *Regularization *Acquisition geometry Fluence modulation - automatic exposure control, fluence field modulation Sparse acquisitions Dose constraints

New paradigm for patient-specific and task-specific imaging Customization of both acquisition and reconstruction

Lots of unanswered questions (aka Future Work) Predictors for highly space-variant systems Optimization using generalized task functions (beyond detectability) How to quantify performance with prior image techniques (and other advanced methods)