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Virtual Clinical Trial

✤ What is the relevant task? 
Detect tumors, detect and locate tumors, estimate parameters!

✤ What objects will be imaged? 
The patient population and the statistics that govern it.!

✤ What is the imaging system(s)? 
The physics and statistics of the system which determine how an 
object is mapped to image data.!

✤ How will the information be extracted?  
The observer.!

✤ What measure of performance will be used?  
The figure of merit
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Observers

✤ Decision-making strategy!

✤ Options 
-Human  
-Model  
-Anthropomorphic model  
-Computer-aided diagnosis (CAD)



Observer review

✤ Classification  
 

✤ Estimation  
 

✤ Combination

t = T (g)

�� = �(g)

t = T (g)
�� = �(g)

Classification
Signal-absent images

Signal-present images

ROC analysis Hotelling observer

✤ Is the ideal observer when the image data are Gaussian 
distributed!

✤ Maximizes the SNR among all linear observers!

✤ Requires knowledge of the first- and second-order statistics!

✤ A linear template applied to the image

t = w†g

w = K�1
g �g



Ideal linear observers

� = t

Channelized Hotelling observer

✤ Dimension of v is much smaller than g!

✤ Ideal linear observer on channel outputs!

✤ Channels can be chosen to mimic human visual system!

✤ Internal noise model is needed to match absolute performance

v = Tg

t = ⇠†v ⇠ = K�1
⇠ �⇠

Ideal linear observers

� = t

Limitations of Hotelling observers

✤ Signal location is fixed!

✤ Performance is limited in the presence of signal-shape variability!

✤ Signal must often be very weak to achieve AUC < 1.0
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Task is limited

Combined tasks

��

D1

D2

EROC

✤ TPF vs. FPF!

✤ AUC from 2AFC test!

✤ Ideal observer is likelihood 
ratio
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Traditional ROC Curve

EROC

✤ Expected utility for TPF vs. FPF!

✤ AEROC from 2AFC test!

✤ Ideal observer is known!

✤ Specializes to LROC for signal 
localization tasks
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Scanning linear observer

✤ Maximizes area under the EROC curve when the image 
statistics are Gaussian distributed and a delta utility function 
is assumed!

✤ Non-linear observer due to the maximization steps

t(g,�) = �g(�)†K�1
g (g � g)� 1

2
�g(�)†K�1

g �g(�)

t(g) = max
�

t(g,�)
��(g) = arg max

�
t(g,�)

Scanning linear observer
Estimating signal position

� = t(g,�)

Scanning linear observer
Estimating signal position

� = t(g,�)

Anthropomorphic models? 

Courtesy of E. Krupinski

✤ Human scan pattern is difficult to model



Anthropomorphic models? 

Courtesy of E. Krupinski

✤ Human scan pattern is difficult to model
Observer is limited

Problem

Task realism
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Solution

✤ Does absolute performance matter?!

✤ What matters is that the same decision is made using the model 
observer!

✤ Rank ordering!

✤ May allow for simpler tasks and observers

Rank ordering
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Ranking Systems

✤ A judge is a program producing the estimates of the 
performance for a system (may include multiple readers)!

✤ Judge j produces a rank Rjs for system s !

✤ We want to know how consistent these rankings are 
among the judges



Ranking Systems

R̄s =
1
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JX
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Q =
SSt

SSe

The Friedman statistic  is 

Ranking Systems

✤ The Friedman statistic is usually used in hypothesis testing 
where the null hypothesis is that the rankings of the judges 
are uncorrelated!

✤ Under the null hypothesis the distribution of  Q can be 
approximated by a chi-square distribution with S - 1 
degrees of freedom!

✤ A large value for Q indicates agreement among the judges

Ranking Systems

✤ We want a large value for Q, but how large?!

✤ The maximum value for Q is 

Q
max

= J (S � 1)

�2
s =

1

J

JX

j=1

�
Rjs � R̄s

�2

Define a sample variance for each system

Ranking Systems
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Task-Based Turing Test

✤ Problem:  Is the simulated data realistic enough?!

✤ Question: Realistic enough for what?!

✤ Answer: Realistic enough to give results for estimators in 
simulation that match what we get with real data!

✤ We must quantify how well the results match

Task-Based Turing Test

✤ Consider parameter µ with estimator µest !

✤ µest has a PDF pr1(µest) with the simulated data!

✤ µest has a PDF pr2(µest) with the real data!

✤ Want to measure how well these PDFs match

Task-Based Turing Test
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1

Nr
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+
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+
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To measure the match between the two PDFs we will use the Wicoxon 
statistic

MRMC Analysis applies

Task-Based Turing Test

✤ W is usually used to reject the null hypothesis that the two 
distributions are the same!

✤ W is also an estimate of the  AUC for the two PDFs!

✤ If the two PDFs are the same, then the AUC is 0.5



Task-Based Turing Test

✤ If 0.5 is within one standard deviation of  W  we will 
consider the two PDFs to be a good match!

✤ As the number of cases and readers increases the standard 
deviation decreases and this becomes a more demanding 
test!

✤ Using MRMC analysis we can compute the numbers of 
readers and cases needed to reach the level of accuracy 
desired!

Task-Based Turing Test

Task-Based Turing Test

Single'signal'present'image:'
Simulation Signal Present ROI (single image): 3mm 14HU object
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Real Signal Present ROI (single image): 3mm 14HU object
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Task-Based Turing Test

Signal'present'image'(500'averaged):'
'Simulation Signal Present ROI (averaged by 500 images): 3mm 14HU object
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Real Signal Present ROI(averaged by 500 images):3mm 14HU object
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Task-Based Turing Test
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Summary

✤ Observer models can predict human performance for relatively 
simple tasks!

✤ Consistent ranking may be more important than absolute quantitation!

✤ Task-based methods can be used to test model realism


