

### Matthew Kupinski

July 22, 2014

### Virtual Clinical Trial

- What is the relevant task? Detect tumors, detect and locate tumors, estimate parameters
- What objects will be imaged? The patient population and the statistics that govern it.
- What is the imaging system(s)? The physics and statistics of the system which determine how an object is mapped to image data.
- \* How will the information be extracted? The observer.
- \* What measure of performance will be used? The figure of merit

### Virtual Clinical Trial

- \* What is the relevant task? Detect tumors, detect and locate tumors, estimate parameters
- \* What objects will be imaged? The patient population and the statistics that govern it.
- What is the imaging system(s)? The physics and statistics of the system which determine how an object is mapped to image data.
- \* How will the information be extracted? The observer.
- \* What measure of performance will be used? The figure of merit

### Observers

Decision-making strategy

Options

 Human
 Model
 Anthropomorphic model
 Computer-aided diagnosis (CAD)



### Classification





### Hotelling observer

 $t = \boldsymbol{w}^{\dagger} \boldsymbol{g}$  $w = K_{\boldsymbol{g}}^{-1} \Delta \overline{\boldsymbol{g}}$ 

- \* Is the ideal observer when the image data are Gaussian distributed
- \* Maximizes the SNR among all linear observers
- \* Requires knowledge of the first- and second-order statistics
- \* A linear template applied to the image

### Ideal linear observers = t

### Channelized Hotelling observer

$$\boldsymbol{v} = T\boldsymbol{g}$$

$$t = \boldsymbol{\xi}^{\dagger} \boldsymbol{v} \qquad \boldsymbol{\xi} = K_{\boldsymbol{\xi}}^{-1} \Delta \overline{\boldsymbol{\xi}}$$

- \* Dimension of v is much smaller than g
- \* Ideal linear observer on channel outputs
- \* Channels can be chosen to mimic human visual system
- \* Internal noise model is needed to match absolute performance



### Limitations of Hotelling observers

- \* Signal location is fixed
- \* Performance is limited in the presence of signal-shape variability
- \* Signal must often be very weak to achieve AUC < 1.0







### Scanning linear observer

$$t(\boldsymbol{g}, \boldsymbol{\theta}) = \Delta \overline{\boldsymbol{g}}(\boldsymbol{\theta})^{\dagger} K_{g}^{-1}(\boldsymbol{g} - \overline{\boldsymbol{g}}) - \frac{1}{2} \Delta \overline{\boldsymbol{g}}(\boldsymbol{\theta})^{\dagger} K_{g}^{-1} \Delta \overline{\boldsymbol{g}}(\boldsymbol{\theta})$$
$$t(\boldsymbol{g}) = \max_{\boldsymbol{\theta}} t(\boldsymbol{g}, \boldsymbol{\theta})$$
$$\widehat{\boldsymbol{\theta}}(\boldsymbol{g}) = \arg\max_{\boldsymbol{\theta}} t(\boldsymbol{g}, \boldsymbol{\theta})$$

- \* Maximizes area under the EROC curve when the image statistics are Gaussian distributed and a delta utility function is assumed
- \* Non-linear observer due to the maximization steps

### Scanning linear observer

Estimating signal position



# Scanning linear observer Estimating signal position $\times$ $= t(g, \theta)$

### Anthropomorphic models?



\* Human scan pattern is difficult to model

Courtesy of E. Krupinski









### Solution

- \* Does absolute performance matter?
- \* What matters is that the same decision is made using the model observer
- \* Rank ordering
- \* May allow for simpler tasks and observers









### **Ranking Systems**

- \* The Friedman statistic is usually used in hypothesis testing where the null hypothesis is that the rankings of the judges are uncorrelated
- Under the null hypothesis the distribution of *Q* can be approximated by a chi-square distribution with *S* - 1 degrees of freedom
- \* A large value for *Q* indicates agreement among the judges





### Task-Based Turing Test

- \* Problem: Is the simulated data realistic enough?
- \* Question: Realistic enough for what?
- \* Answer: Realistic enough to give results for estimators in simulation that match what we get with real data
- \* We must quantify how well the results match

### Task-Based Turing Test

- \* Consider parameter  $\mu$  with estimator  $\mu_{est}$
- \*  $\mu_{est}$  has a PDF pr<sub>1</sub>( $\mu_{est}$ ) with the simulated data
- \*  $\mu_{est}$  has a PDF pr<sub>2</sub>( $\mu_{est}$ ) with the real data
- \* Want to measure how well these PDFs match

### Task-Based Turing Test



### Task-Based Turing Test

- \* W is usually used to reject the null hypothesis that the two distributions are the same
- \* W is also an estimate of the AUC for the two PDFs
- \* If the two PDFs are the same, then the AUC is 0.5

### Task-Based Turing Test

- \* If 0.5 is within one standard deviation of *W* we will consider the two PDFs to be a good match
- As the number of cases and readers increases the standard deviation decreases and this becomes a more demanding test
- \* Using MRMC analysis we can compute the numbers of readers and cases needed to reach the level of accuracy desired

### Task-Based Turing Test



### Task-Based Turing Test

## <figure>

### Task-Based Turing Test

### Signal present image (500 averaged):





### Summary

- \* Observer models can predict human performance for relatively simple tasks
- \* Consistent ranking may be more important than absolute quantitation
- \* Task-based methods can be used to test model realism