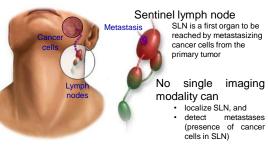
Clinical Translation of Ultrasound-Guided Photoacoustic Imaging

Stanislav (Stas) Emelianov


TEXAS Department of Biomedical Engineering The University of Texas at Austin

MDAnderson Department of Imaging Physics Cancer Center The University of Texas M.D. Anderson Cancer Center

Detection of Micrometastases in Sentinel Lymph Node (SLN)

Primary tumor metastasizes through lymphatic system Melanoma, Breast cancer, Head and neck squamous carcinoma

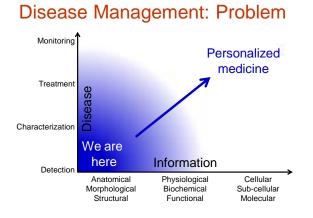
Detection/Characterization/Treatment of SLN using Imaging/Biopsy/Surgery

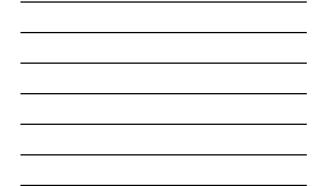
Detection/Characterization of SLN using Imaging/Biopsy

- Dye and <u>radioactive</u> tracer are injected near the tumor
- Contrast agent is allowed to drain to lymph nodes
- Lymphoscintigraphy is performed to identify the sentinel node
- <u>Biopsy</u> is performed to sample sentinel lymph node
- If positive for micrometastatic cancer cell, sentinel and axillary lymph nodes are <u>surgically removed</u>

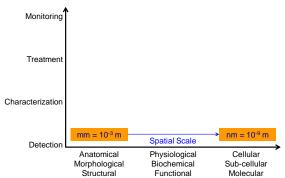
- Highly effective
- Accurate prognosis
- May take up to 2 weeks
- Invasive
- Requires multiple specialists (nuclear medicine, surgery, pathology)

Detection/Characterization/Treatment of SLN using Imaging/Biopsy/Surgery

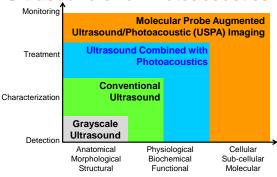

Disease Management


Functional

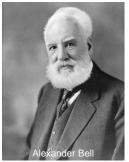
Molecular

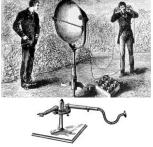

Structural


2

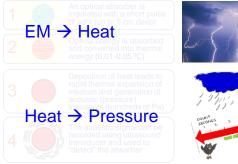


Disease Management: Challenge



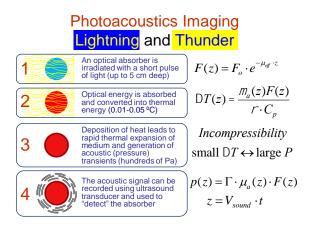

Solution: Ultrasound and Photoacoustics

Photoacoustics Imaging and Sensing: Alexander Bell, 1980

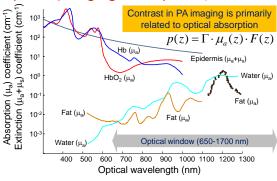


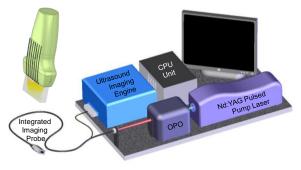
A. Bell and C. Tainter, 1880

Photoacoustics: Lightning and Thunder

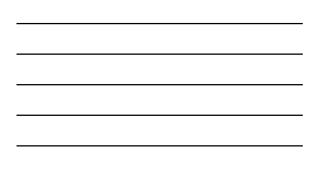


Photoacoustics Imaging Lightning and Thunder

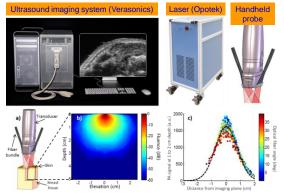




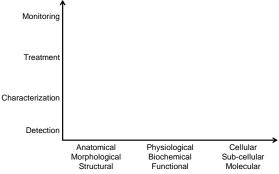
Photoacoustic Imaging: Optical (Imaging/Therapeutic) Window

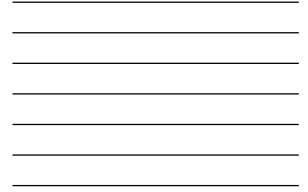


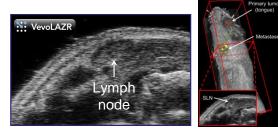
Integrated USPA Imaging System (Ultrasound and Photoacoustics)

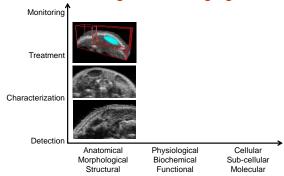


Integrated USPA Imaging System (Ultrasound and Photoacoustics)

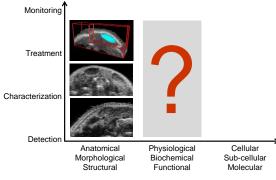


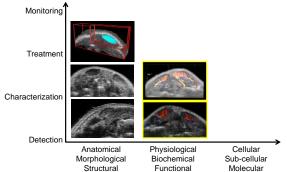

Clinical Prototype of USPA Imager

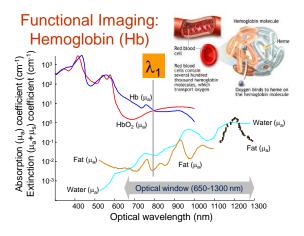

Detection/Characterization/Therapy of SLN using USPA Imaging



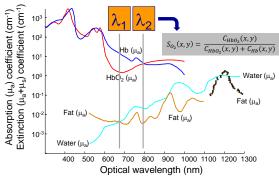
Mouse Model of Metastatic Oral Cancer

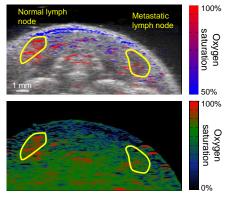

- Primary tumor in a tongue of a mouse
- After 2-3 weeks, micrometastatic foci are formed in sentinel lymph node(s)


Detection/Characterization/Therapy of SLN using USPA Imaging

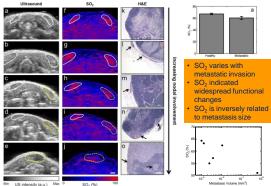


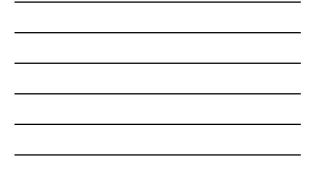
Detection/Characterization/Therapy of SLN using USPA Imaging

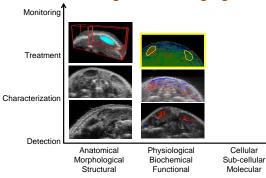

Detection/Characterization/Therapy of SLN using USPA Imaging



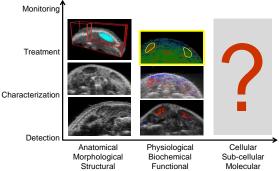
Functional Imaging: Total Hemoglobin and Oxygen Saturation



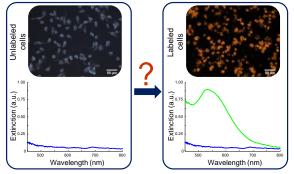

Detection/Characterization of SNL



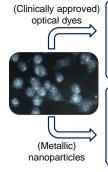
Detection/Characterization of SNL

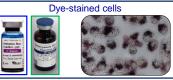


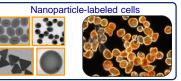
Detection/Characterization/Therapy of SLN using USPA Imaging


Detection/Characterization/Therapy of SLN using USPA Imaging

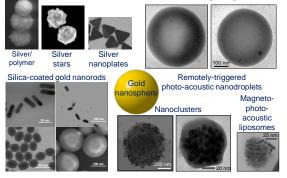
Cellular/Molecular Imaging

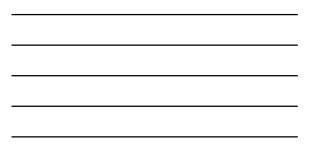

(Cancer cells, Stem cells, Macrophages, etc.)

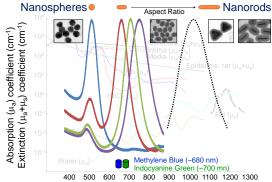




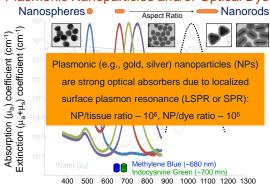
Cellular/Molecular Imaging


(Cancer cells, Stem cells, Macrophages, etc.)

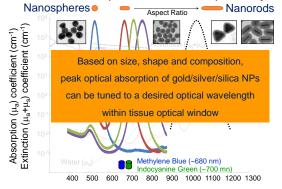




Contrast <u>nano</u>Agents for US/PA Molecular Imaging

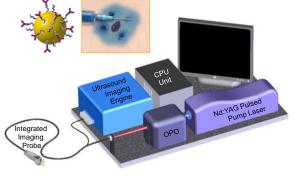


Contrast Agents for Molecular US/PA Imaging: Plasmonic Nanoparticles and/or Optical Dyes



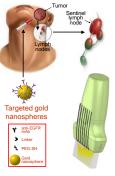
Contrast Agents for Molecular US/PA Imaging: Plasmonic Nanoparticles and/or Optical Dyes

Contrast Agents for Molecular US/PA Imaging: Plasmonic Nanoparticles and/or Optical Dyes Nanospheres

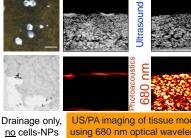

Contrast Agents for Molecular US/PA Imaging: Plasmonic Nanoparticles and/or Optical Dyes

Nanospheres Nanorods

	104	00110100		Aspe	ect Rat	10		1.101	101040	1
(cm ⁻¹) t (cm ⁻¹)	•	*	N	\sum		$(\mu_q + \mu_s)$	•	P	λł.	
ent		Due to the	eir nanon	neter s	ize a	nd, the	erefo	ore, a	bility	
effici		to escap	be vascu	lature	and o	diffuse	into	tissu	Je,	
000	10 ⁰	plasmonio	c nanopa	rticles	are i	deal c	andi	date	s for	
ין 1+נו	5 10 ⁻¹		mole	cular I	PA im	aging				
Absorption (μ_a) coefficient (cm ⁻¹) Extinction ($\mu_a + \mu_a$) coefficient (cm ⁻¹)	10 ⁻²⁻	-		X	X : \]		<i>`</i>		
ds tin					5	- (000				
₹ŵ				Methyle Indocya				n)		
		400 500	600 70	0 800	900	1000	1100	1200	1300	

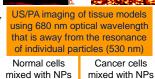

Ultrasound/Photoacoustic Imaging with Molecularly Targeted NanoAgents

Detection and Characterization of SLN using Molecular USPA Imaging


- Cocktail of optical dye and targeted gold nanospheres are injected near the tumor
- Contrast agent is allowed to drain to lymph nodes
- Ultrasound-guided photoacoustic (USPA) imaging is performed to identify

 the sentinel node
 - cancer cells within the node

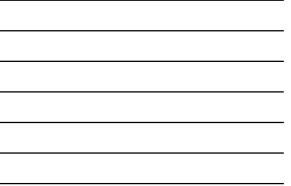
Detection of Micrometastases in Sentinel Lymph Node (SLN)

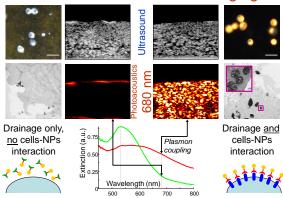

- · We have developed an approach based on
 - Gold nanospheres targeted to phenotype of the primary tumor (peak absorption at ~530 nm)
 - Ultrasound-guided spectroscopic photoacouistics
- · In this approach
 - Nanoparticles are injected near the tumor and allowed to drain to lymph node (SLN)
 - US/PA imaging is performed within 680-750 nm wavelength range to identify receptor-mediated endosytosed nanoparticles

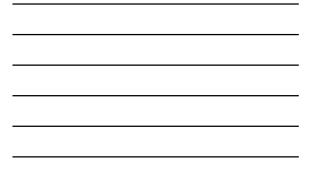
interaction

<u>م</u>مر

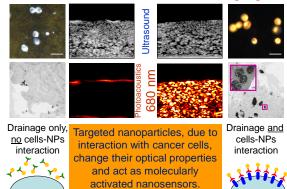
Molecular Photoacoustic Imaging



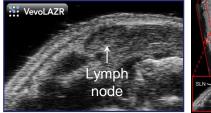



cells-NPs interaction

and the

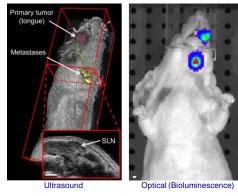


Molecular Photoacoustic Imaging


Molecular Photoacoustic Imaging

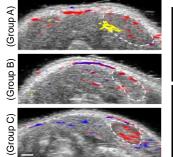
Photoacoustic Detection of Micrometastases in Sentinel Lymph Node

 Injection of molecularly active plasmonic sensors – MAPS (targeted 40 nm gold nanospheres)

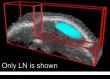


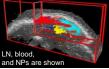
Group A	Group B	Group C		
Match	Mismatch	No match		
EGFR-positive tumor and mets	EGFR-positive tumor and mets	No tumor (normal mouse)		
EGFR targeted nanospheres	RG16 targeterd nanospheres	EGFR targeted nanospheres		

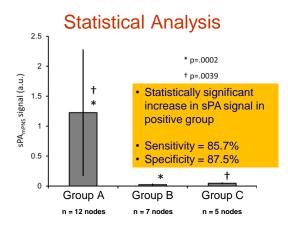
In-Vivo Mouse Imaging Studies

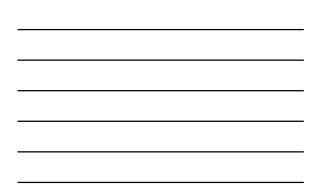


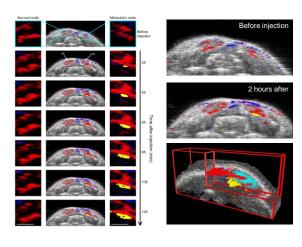
Metastatic Mouse Model

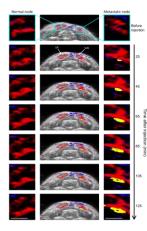


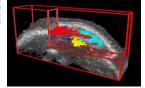

In-Vivo Mouse Imaging Studies Representative comparison 3-D USPA images,

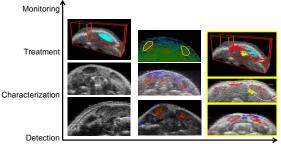

Representative comparison between three groups











Molecular PA imaging can identify metastasis within 30 minutes after contrast agent injection.
Clinically, the procedure can be performed within 2-4 hour visit to an outpatient facility.

Detection/Characterization/Therapy of SLN using USPA Imaging

Anatomical Morphological Structural

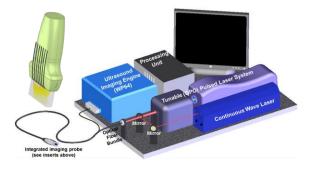
Physiological Biochemical Functional

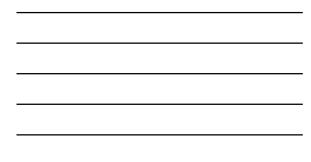
Detection/Characterization of SLN and Treatment of Axillary Lymph Nodes

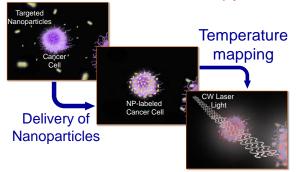
- Cocktail of dye and small (5-nm) targeted gold nanospheres are injected near the tumor
- Contrast agent is allowed to drain to lymph nodes

- Ultrasound-guided photoacoustic (USPA) imaging is performed to identify
 - the sentinel node
 - cancer cells within the node
- If positive for micrometastatic cancer cell, sentinel and axillary lymph nodes may be removed
- Non-ionizingAccurate
- Cancer specific
- Immediate

Detection/Characterization of SLN and Treatment of Axillary Lymph Nodes


- Cocktail of dye and small (5-nm) targeted gold nanospheres are injected near the tumor
- Contrast agent is allowed to drain to lymph nodes
- Ultrasound-guided photoacoustic (USPA) imaging is performed to identify


 the sentinel node
 - cancer cells within the node
- Photothermal therapy


- Non-ionizing
- Accurate
- Cancer speci
- Immediate
 Imaging → Therapy

Integrated US/PA Imaging and Image-Guided Therapeutic System

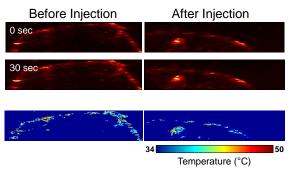
Role of USPA Imaging in Photothermal Therapy

Thermal Imaging using Photoacoustics

- The photoacoustic signal is given by $p(z) = \Gamma \cdot \mu_a \cdot F(z)$
- The Gruneisen parameter is temperature-dependent

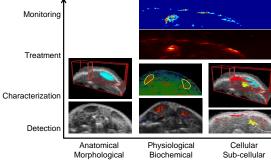
 $\Gamma(T) = \frac{\beta(T) \cdot c(T)^2}{C_p}$

 $\begin{array}{ll} \beta(T): & \text{thermal expansion coefficient} \\ c(T): & \text{speed of sound} \\ C_p: & \text{heat capacity} \end{array}$


• Therefore, PA pressure $p(z,T) \leftrightarrow$ temperature T

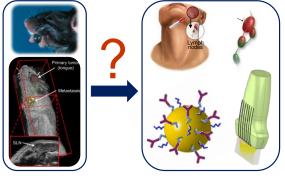
$$p(z,T) = \Gamma(T) \cdot \mu_a \cdot F(z) = (a+bT) \cdot \mu_a \cdot F(z)$$

Photothermal Therapy using Plasmonic Nanoparticles 180 sec A US / 15°(Thermal ΔT **NP Concentration** Time (min) 0 2 3 4


Photothermal Therapy using **Plasmonic Nanoparticles**

1

Detection/Characterization/Therapy of SLN using USPA Imaging

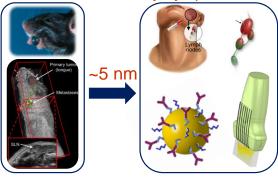


Functional

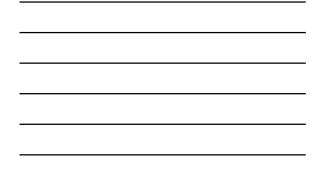
Structural

Sub-cellular Molecular

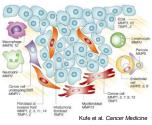
Detection/Characterization of SLN and Treatment of Micrometastases

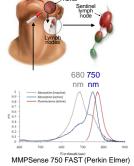


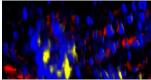
Clearance of Nanoparticles



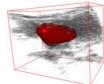
Detection/Characterization of SLN and Treatment of Axillary Lymph Nodes

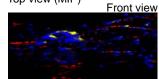

Detection/Characterization of SLN and Treatment of Micrometastases

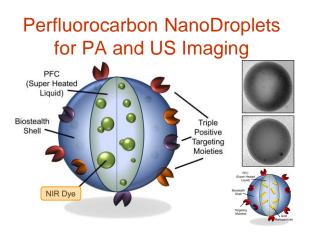



Detection and Characterization of SLN using Molecular USPA Imaging

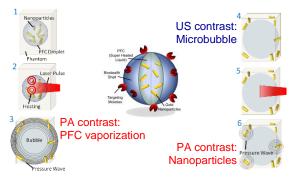
- Molecularly sensitive dye is injected near the tumor
 - Matrix Metalloproteinases (MMP) are associated with metastasis

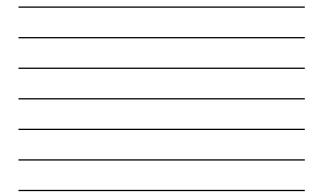


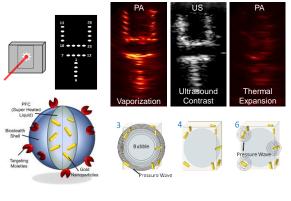

Drainage and Activation of **MMP-sensitive Dye**

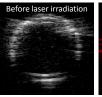

Top view (MIP)

Side view

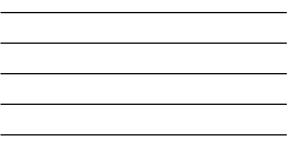


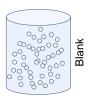


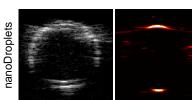


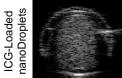

2.5-in-1 Contrast Mechanisms

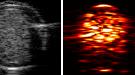
2.5-in-1 Contrast Mechanisms

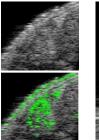


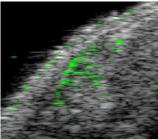



Photoacoustic contrast: vaporization of PFC-nDs (laser-triggered liquid-to-gas phase transition)

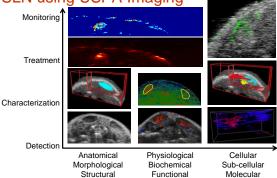

Ultrasound contrast: vaporized PFC-nDs (remaining gas microbubble)







USPA Detection of SLN and Micrometastases



Combined Ultrasound and Photoacoustics Monitoring **Molecular Probe Augmented** Ultrasound/Photoacoustic (USPA) Imaging **Ultrasound Combined with** Treatment **Photoacoustics** Conventional Ultrasound Characterization Grayscale Detection Ultrasound Anatomical Physiological Cellular Morphological Biochemical Sub-cellular Structural Functional Molecular

Detection/Characterization/Therapy of SLN using USPA Imaging

Acknowledgements

Collaborators from: University of Texas at Austin BME, ECE, ChE, ME, Chemistry Pharmacy, Dell Medical School UT MD Anderson Cancer Center UT Health Science Center Houston University of Alabama at Birmingham

Industrial partners: Visualsonics, Inc. NanoHybrids, Inc. Athera Medical, Inc. Sonosite, Inc. Verasonics, Inc. TVL, TMA, ATI

Funding: National Institutes of Health National Science Foundation Breast Cancer Research Foundation Department of Defense American Heart Association

Inn

Clinical Translation of Ultrasound-Guided Photoacoustic Imaging

Stanislav (Stas) Emelianov

Department of Biomedical Engineering The University of Texas at Austin

MDAnderson Geneer Center The University of Texas M.D. Anderson Cancer Center Carker Holer