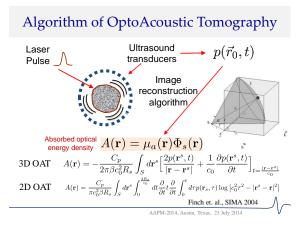
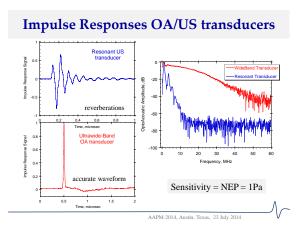
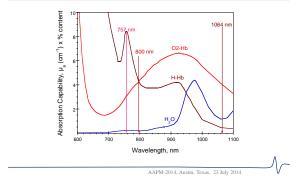

Laser Optoacoustic + Ultrasonic Imaging System Assembly (LOUISA) for Functional-Anatomical Mapping

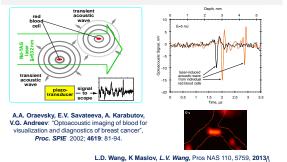


Arrrays of OptoAcoustic Transducers: > Andre Conjusteau Analog and Digital Electronics > Vassili Ivanov FiberOptics and Mechanics > Peter Brecht Firmware and Software Pratik Talole, Ketan Mehta Modeling, Math-Physics, Tomography > Sergey Ermilov, Slava Nadvoretsky, > Mark Anastasio, Wash U St. Louis Experimental Imaging, Data Processing > Richard Su, Dmitri Tsyboulski Animal Studies, Nanotechnology > Anton Liopo	Students, Post Docs, Scientists, Engineers and Faculty Collaborators	
Clinical imaging of breast cancer	٥	
➢ Wei Yang, MD Anderson Cancer Cntr AAPM-2014	, Austin, Texas, 23 July 2014	ſ



Listening to Light with OptoAcoustics

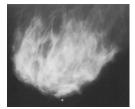




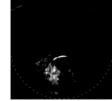
Biophotonic Imaging Technology based on Optical Absorption in Tissues

Optoacoustic Detection of Erythrocytes: demonstration of a single red blood cell detection

Rationale for Imaging of Cancerous Tumors based on Angiogenesis

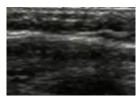

"Without a private supply of new microscopic blood vessels cancerous tumors can not grow larger than the head of a pin and are unlikely to become lethal. Without blood vessels to feed them oxygen and nutrients, these tumors remain tiny

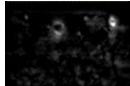
and unable to spread..." Judah Folkman, MD



AAPM-2014, Austin, Texas, 23 July 2014

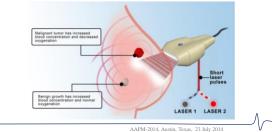
Breast Cancer Imaging (X-ray Mammography vs. LOIS)



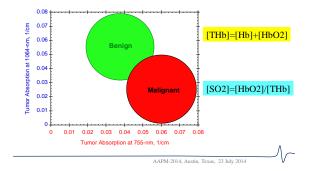

MAMMOGRAPHY IMAGE Low Contrast: dense breast Missing 20% of cancerous tumors

OPTOACOUSTIC IMAGE High Contrast: 2x-3x Resolution: 0.5 mm

Real-time Opto-Acoustic & Ultrasound Imaging Ulnar Artery in Human Arm

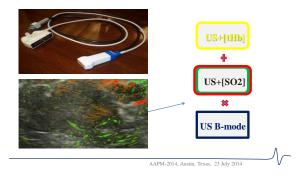

Ultrasound - anatomical information on tissue structure (morphology)

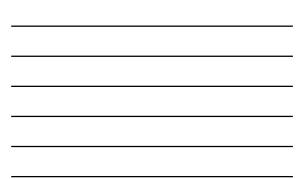
Optoacoustics - functional information about [tHb] and [SO2] (molecular)


M. Frenz et al., Proc. SPIE, vol. 4960, 2003 A. Oraevsky, S. Emelianov et al., Proc. SPIE, vol. 5320, 2004 AAPM-2014, Austin, Texas, 23 July 2014

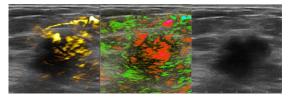

Co-registration of OptoAcoustic and Ultrasound Images

- This technology combines and co-registers images based on optical and acoustical contrast to improve the accuracy of cancer detection and diagnosis.
 Co-registered OA+US imaging has the merit of providing both, functional information based on specificity of optical contrast in blood and morphological information with high sensitivity and resolution of ultrasonic imaging.


Method of Tumor Differentiation



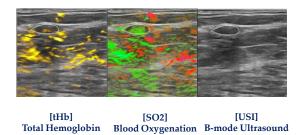
Hand-held Opto-Acoustic / Ultrasound Probe


and Method of Co-registered Functional+Anatomical Imaging

Invasive Carcinoma:

Enhanced concentration of deoxygenated blood

[tHb]	[SO2]	[USI]
Total Hemoglobin	Blood Oxygenation	B-mode Ultrasound


AAPM-2014, Austin, Texas, 23 July 201

AAPM-2014, Austin, Texas, 23 July 2014

Λr

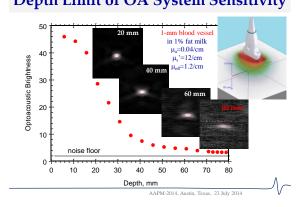
Benign FibroAdenoma:

normal blood oxygenation, not significant angiogenesis

Co-registration of OA and US for diagnostic imaging of breast cancer

Fibroadenoma, benign tumor with normal blood oxygenation and and low total hemoglobin

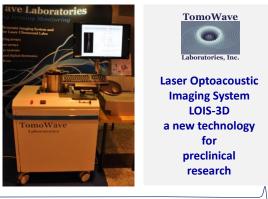
AAPM-2014, Austin, Texas, 23 July 20

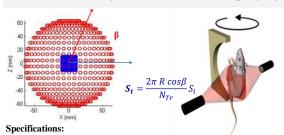

KEY FEATURES OF BREAST IMAGING WITH IMAGIO™ VERSUS THE CURRENT STANDARD OF CARE*

Key Properties	Gold Standard (X-ray mammo)	Imagio (OA+US)	Significance Benefits
Morphology	Only	Yes	High sensitivity
and function	morphology	Both	and specificity
False	25%	<3%	Early detection
Negative			
False	82%	<36%	Minimum
Positive			Negative biopsy
Safety	Carcinogenic	Safe	More frequent
	radiation	Light & Sound	procedures
Convenience	Pain of	No	Better
	compression	compression	acceptance

* Projections based on preliminary analysis of initial clinical data of 79 patients

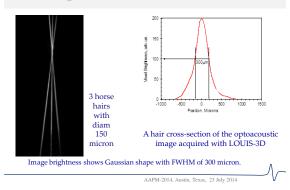
Diagnoses BIRADS-4A and BIRADS-4B cases 30% more accurately


AAPM-2014, Austin, Texas, 23 July 2014


Depth Limit of OA System Sensitivity

Tomography with LOUISA 2D versus 3D

- 2D is conveniently performed with hand-held probe, but can not be used for full organ screening, sensitivity (contrast) is limited.
- 2D delivers real time video rate images that can be important for imaging rapid physiological changes, but small aperture of the ultrasonic transducer array provides limited lateral resolution and relatively inaccurate quantitative brightness of image pixels
- 3D with provides solutions for problems of 2D imaging (low background, high resolution in all directions) at the cost of time for data acquisition and image reconstruction.

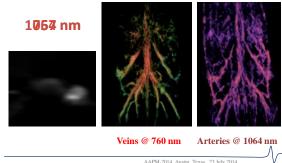

AAPM-2014, Austin, Texas, 23 July 20

Quantitative OptoAcoustic Tomography

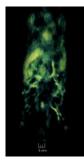
150 deg arc, **65mm** dia array, **128** of wideband **0.1 to 8 MHz** transducers **38400** virtual transducers on spherical surface – rigorous reconstruction Minimal Imaging Time: **30 sec** acquisition + **20 sec** image reconstruction

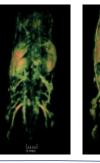
Spatial Resolution in 3D

Anatomical OptoAcoustic Imaging tissue structures: organs, bones

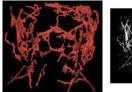

AAPM-2014, Austin, Texas, 23 July 2014

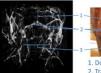
3D OptoAcoustic Imaging of blood vessels, internal organs and kidney





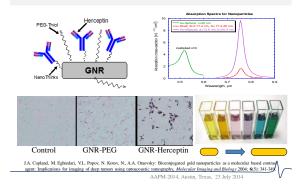
Functional OptoAcoustic Imaging 1064nm / 757nm - arterial/venous systems


Functional OptoAcoustic Imaging at 760 nm gradual decrease of blood oxygenation



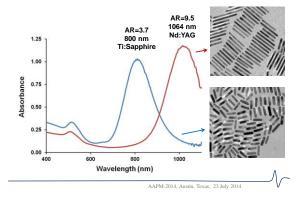
AAPM-2014, Austin, Texas, 23 July 2014

OptoAcoustic Imaging of Mouse Brain Live Mouse, Total Hemoglobin Map



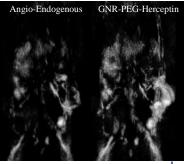


2. Transverse Sinuses 3. Cerebellum


AAPM-2014, Austin, Texas, 23 July 2014

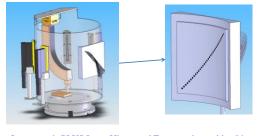
Molecular Imaging using Gold Nanorods

GNRs as OptoAcoustic Contrast Agents



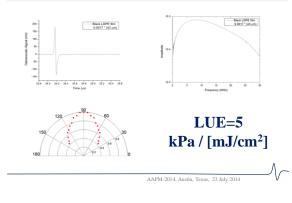
Molecular OptoAcoustic Imaging of a Tumor

BT474 Tumor HER2 receptors Injected iv 200 μL of targeted GNR-Herceptin C=7x10¹²/mL

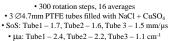


AAPM-2014, Austin, Texas, 23 July 2014

1



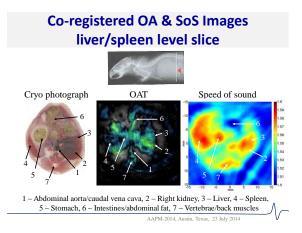
Design of Imaging Module OA scan is followed by LU scan

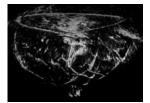


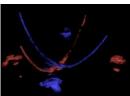
Optoacoustic PLUS Laser Ultrasound Tomography enables 5 images: Functional [Hb], [HbO2], [H2O] and morphology: SoS and UA

Laser Generated Ultrasound

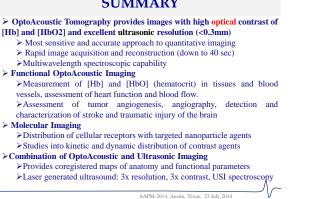
OA-US Tube Phantom






Viewed from the LU emitter perspective

From LOIS-3D to LOUISA-3D translation to diagnostic imaging of breast cancer



Breast Screening, Diagnostics and Monitoring System

SUMMARY

