Overview of MR-guided Focused Ultrasound Physics & Applications

> R. Jason Stafford, PhD Department of Imaging Physics

Thermal therapy energy sources

- Cryotherapy
- Radiofrequency
- Microwave
- Laser
- Ultrasound

Schlesinger D, et al, MR-guided focused ultrasoun surgery, present and future Med. Phys. 40 (8), August 2013

Interstitial multi-element U/S applicators

Role of image guidance in thermal therapy

- Facilitate more optimized treatment
 - planning
 - targeting/localizing
 - m
 - verification
- VX-2 Imaging information synergistic with HIFU Ablation in F Muscle @1.5T

Treatment prescription
 O Prescribed sonication point

Thermal dose (point) Thermal dose (total)

Spinal cord

- integration of model based simulation
- Endgame
 - increase safety + efficacy

ID, Stafford RJ, Price RE JMRI 15 (2): 185-94., 2002.

itate minimally invasive approact iously not considered possible/s

MR Temperatu	re l	maging (MR	iTI)	
Diffusion	 Proton resonance frequency (PRF) of water shifts linearly with temperature 			
T1-relaxation	 Sensitivity: -0.01 ppm/°C (water) 			
• PRF Shift		Tissue Type (Canine)	Temp. Range (°C)	Temp. Sensitivity (ppm/⁰C)
E 11-		Brain	25-59	-0.0102 + 0.0005
2 and		Prostate	32-59	-0.0099 <u>+</u> 0.0004
2 C		Kidney	35-54	-0.0103 <u>+</u> 0.0006
1		Liver	35-51	-0.0098 + 0.0002
12s HIFU sonication		Bone (femur)	17-57	-0.0109 + 0.0002
aliased lipid (-CH ₂)		Disadvantag	es	
G · · · ·	 Less sensitive at low field strengths 			
('(')') apinitidu apinitidu (-OH)	 Lipid is insensitive to temperature Sensitive to background field changes Motion, susceptibility, etc 			
Water (-OH)				eld changes
				•
-24 -1.2 0 1.2 2.4				
Frequency (ppm)		Review:	Rieke, V. & Butts Pauly, K, JMF	11, 27:376-90 (2008);

Stratter Cancer- "Virtual" Lumpectomy Ann-invasive alternative to surgical "lumpectomy" Mulatory, single session procedure Over 300 patients treated in Phase I/II trials, up, to 60 months follow-up. Patients treated with ExAblate MRgFUS, followed by adjuvant therapy Io recurrences; no severe adverse events

Investigational Device Only

MRgFUS of painful bone mets

Prostate mets in 63 yo male in right anterior-superior iliac spine

Pre-Treatment: T1W+C MRI => perfused

Post-Treatment (3 mo): T1W+C MRI => non-perfused CT => increased density in treated area and disappearance of nodular pathologic tissue

Patient classified as complete responder (MDACC criteria)

Case Study – Liver HCC

- 67yr old patient with a 2cm HCC primary lesion in segment 5. The liver because it was so large pushed segment 5 well below the ribs providing a reasonable treatment position.
- Although not an ideal first position, because of some anaesthesia issues due to patient chest problems, it was decided to leave the position and try to work around.

Images courtesy of Sapienza University - Rome Investigational Device Only

Case Study – Liver HCC

- A total of 32 sonications with an average energy of 2445 joules with a 15second sonication time.
- I Apnea time was 27seconds with a minimum of 60 seconds ventilation time between sonications.
- minutes.
 Non perfuse volume of lesion. 100%

InSighter 5

Prostate HIFU technology

Transrectal Devices 1,2

- Focused ultrasound transducers
- Ultrasound imaging guidance
- Long history (>2,000 treatments)
- Long treatment times

Interstitial/Transurethral^{3,4,5}

• Cylindrical/planar transducers

1. Gelet et al 1996, 2. Foster et al 1993, 3. Diederich et al 1996, 4. Lafon et al 1998, 5. Hazle et al 2002

- MRI-guidance
- No focusing capabilities
- Shorter treatment times

Ablatherm

(Courtesy Rajiv Chopra, PhD

Histological Analysis

 Continuous pattern of thermal damage extends to boundary of prostate gland

(Courtesy Rajiv Chopra, PhD)

40°C

2						4 3 3 3 3 3
	temperature	Arrhenius dose				
1 61 10	End of	therapy	-			
	a .	° 🚬 🦊		HSP70		HSP27
	HSP 70	d HSP 27	Rylander MN, Rylander MN,	Feng Y, Zhang Y, Bass Stafford RJ, Hazle J, V	s J, Stafford RJ, et Whitney J, Diller KF	al, J Biomedical Optics, 2006 R, Int J Hyperthermia. 2011

• Delivery of nanoparticles using thermosensitive liposomes enhances deep penetration of nanoparticles when triggered by hyperthermia

 Deep penetration of gold nanoparticles improves radiosensitization independent of the effect of hyperthermic radiosensitization

MDAnderson

• In principle, this could be a class solution for a variety of tumors accessible by ultrasound

ourtesy Sunil Krishnan, MD)

Task Group No. 241 MR-Guided Focused Ultrasound

Charge

- Identify methodology, phantoms, and software for performance assessment of MRgFUS
- Areas of technical assessment include intrinsic MRgFUS characteristics, quantitative metrics of MRgFUS, and identification of quality assurance measures and procedures

Membership Keyvan Farahani (NIH)

Rajiv Chopra (UT Southwestern) (Chair) R. Jason Stafford (UT MDACC) (Co-Chair)

Stanley H. Benedict (UC Davis) Paul Carson (U Mich) Chris Diederich (UCSF) Randy King (FDA) Chrit Moonen (Utrecht) Dennis Parker (Utah) Rares Solomir (Geneva) David J. Schlesinger (U Virginia) Gail R. ter Haar (Royal Marsden)

Kim Butts-Pauly (Stanford) Lili Chen (FCCC) Arik Hananel (FUS Foundation) Nathan McDannold (BWH) Eduardo Moros (Moffit) Ari Partanen (Philips) Steffen Sammet (U Chicago) Robert Staruch (Philips) Eyal Zadicario (Insightec)

- Hippocrates Aphorisms (400 BCE)

Thank you for your time!

Email: jstafford@mdanderson.org