Multi-Energy CT: Current status and recent innovations

Co-moderators:

Norbert J. Pelc, Sc.D. Stanford University

Cynthia McCollough, Ph.D. Mayo Clinic

Multi-Energy CT: Current status and recent innovations

Basic concepts & current implementations Norbert Pelc

Data and image analysis methods Lifeng Yu

Clinical applications Cynthia McCullough

Future directions Taly Gilat Schmidt

Panel Discussion

Multi-Energy CT: Basic concepts & current implementations

Norbert J. Pelc, Sc.D. Departments of Bioengineering and Radiology Stanford University

Acknowledgements

Uri Shreter and Robert Senzig: GE Healthcare Thomas Flohr, Bernhard Schmidt and Karl Krzymyk: Siemens Healthcare

Ami Altman, Alex Ganin, Andy Mack, Efrat Shefer: Philips Healthcare

Cynthia McCollough: Mayo Clinic

Research support: GE Healthcare Philips Healthcare, Samsung Electronics

Motivation

www.uhrad.com/ ctarc/ct153b2.jpg

www.uhrad.com/ ctarc/ct153b2.jpg

Lower density or lower atomic number?

Motivation

Is the HU increase due to underlying tissue property or contrast agent?

Motivation

Attenuation coefficients depend on photon energy

Motivation

"Two pictures are taken of the same slice, one at 100 kV and the other at 140 kV...so that areas of high atomic numbers can be enhanced... Tests carried out to date have shown that iodine (Z=53) can be readily differentiated from calcium (Z=20)".

G.N. Hounsfield, BJR 46, 1016-22, 1973.

OUTLINE

- Physical principles of multi-energy x-ray measurements
- Implementations achieving spectral selectivity obtaining multi-energy measurements
- Summary

dual energy x-ray absorptiometry (DEXA)

2 energies \Rightarrow 2 materials

material analysis with absorptiometry

- 2 energies rightarrow 2 materials
- can we generalize this? N energies for N materials?
- limitation: two strong interaction mechanisms Compton scattering and photoelectric absorption Barring a K-edge in the spectrum, the energy dependence of each is the same for all elements!!

basis material decomposition:

- Attenuation of any material is ~ a weighted sum of photoelectric and Compton functions
- Any material can be modeled as a weighted sum of two other materials (basis materials)

Basis material decomposition

material analysis with absorptiometry

constant thickness	(constant thickness is a constraint
• 2 energies unknown thickness	2 known materials
• N energies unknown thickness	still only 2 known materials (only 2 independent functions)
• 2 energies ⇒ constant thickness	3 known materials (constant thickness (CT voxel) is constraint)

Noise depends on dose allocation

with 80/140 kVp dose allocation that maximizes iodine SNR

↓ 80 kVp dose, 140 kVp dose same total dose

Spectral separation and control

- very critical for SNR efficiency, separation robustness, etc.
- implementations different kVp and/or filtration detectors with energy discrimination

Spectral separation

Separation and control of the spectra is important reduced noise improved material characterization improved dose efficiency Achieved by choice of kVp (and mAs allocation) use of filtration performance of energy discriminating detectors

Spectral separation implementations

- ideal photon counting with K-edge filter
- <u>ideal</u> photon counting with energy analysis
- different kVp and filtration
- different kVp
- layered detector

better spectral separation and dose efficiency

Data acquisition implementations

- Sequential scans at different kVp motion sensitivity > scan time
- Two sources at $\sim 90^{\circ}$ on the same gantry

Dual Source Challenge: Inconsistent scans

Data acquisition implementations

- Two sources at $\sim 90^{\circ}$ on the same gantry some motion sensitivity (~ 25% T_{rot})
- Switching kVp within a single scan^{1, 2}
- Lehmann et al: Med Phys <u>8</u>, 659-67, 1981.
 Kalender et al, Med Phys <u>13</u>, 334, 1986.

Rapid kVp switching Dual energy CT

Requires fast generator and

- Dose allocation controlled by dwell
- Difficult to switch

Courtesy of Uri Shreter, GE Healthcare

Data acquisition implementations

- Sequential scans at different kVp motion sensitivity > scan time
- Two sources at 90° on the same gantry some motion sensitivity (~ 25% T_{rot})
- Switching kVp within a single scan
- · Energy discriminating detectors layered detector, photon counting

better immunity to motion

Summary of commercial systems

- Siemens: two sources, different kVp (80 or 100 /140) and filtration, direct control of mA
- GE: single source with rapid switching, same filter for both kVps, control mAs by dwell time
- Philips: dual-layer detector, usual kVp mAs control
- Lots of R&D work, especially on photon counting detectors