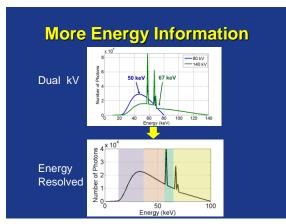
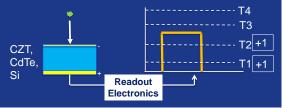
Multi-energy CT: Future Directions

Taly Gilat Schmidt, PhD Department of Biomedical Engineering Marquette University

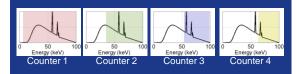

Acknowledgements

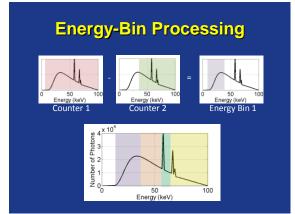
- Kevin Zimmerman
- Franco Rupcich
- Steven Haworth

Results in this talk: NIH R21EB01509 Other research support: GE Healthcare


Overview

- How to acquire more energy information?
 - Photon-counting detectors
- What can we do with more energy information?
 - Material decomposition with less noise
 - K-edge material decomposition
 - Improved CNR using energy weighting
- Current limitations and potential solutions



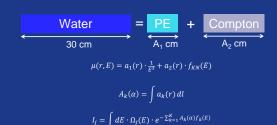

Photon-Counting Spectral Detection

- Direct-conversion semiconductor detectors perform pulse-height analysis to acquire spectral information
- Pulse proportional to deposited energy

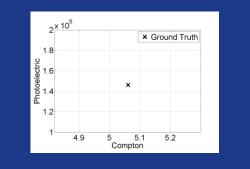
Photon-Counting Spectral Detection

		ial Kvp

- Simultaneous acquisition
- Can by acquired as part of a conventional CT protocol
- > 2 spectral measurements
- Improved energy separation

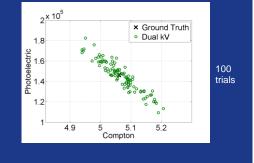

Also true for multilayer detector

What can we do with more energy information?

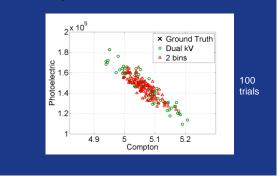

- Material decomposition estimates with less noise (or at less dose)
- Quantification of K-edge contrast agents
- Improved CNR and reduced beam hardening through energy weighting

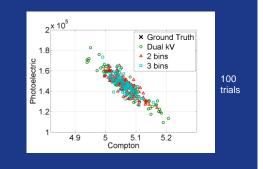
Decomposition with Less Noise

Example: Compare dual kV, 2 bins, 3 bins, at equal exposure



Decomposition With Less Noise

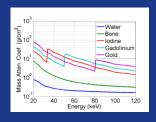




Decomposition With Less Noise

Decomposition With Less Noise

Decomposition With Less Noise


- 40% reduction in noise standard deviation due to improved spectral separation
- 10%-15% noise reduction when going from 2 to 3 bins
- 2^{x 10⁹} 1.8 2 bins 2 bin
- Same mean value

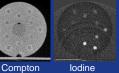
What can we do with more energy information?

- Material decomposition estimates with less noise (or at less dose)
- Quantification of K-edge contrast agents
- Improved CNR and reduced beam hardening through energy weighting

K-edge Contrast Agent Imaging

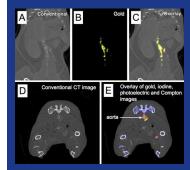
If we have > 2 measurements, we can decompose into > 2 basis materials if K-edge is detectable in each additional material

lodine (Z = 53, 33 keV) \rightarrow Bismuth (Z=83, 90 keV)


K-edge Contrast Agent Imaging

 $\mu(r, E) = a_1(r) \cdot \frac{1}{E^3} + a_2(r) \cdot f_{KN}(E) +$ $a_3(r) \cdot \mu_l(E) + a_4(r) \cdot \mu_{Gd}(E) + \dots$

Photoelectric


Schlomka, et. al., PMB 2009

K-edge Contrast Agent Imaging

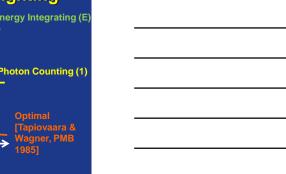
- Detect contrast agent, even if CT number is indistinguishable from soft tissue
- Direct quantification of concentration
- K-edge of iodine (33 keV) may be too low

Targeted K-edge Agents

Gold nanoparticles targeted to atherosclerosis (Au-HDL)

Cormode, Radiology 2010

Comparison to Other Modalities


- Higher spatial resolution
- Higher temporal resolution
- Direct quantitative information
- · Lower contrast agent sensitivity:
 - PET: <10⁻¹⁰ mol/L
 - MRI: 10⁻³ 10⁻⁵ mol/L
 - CT: 10⁻¹ 10⁻³ mol/L

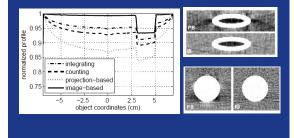
Roessl, IEEE TMI, 2011

What can we do with more energy information?

- Material decomposition estimates with less noise (or at less dose)
- Quantification of K-edge contrast agents
- Improved CNR and reduced beam hardening through energy weighting
 – Non-material specific imaging

Optimal Energy Weighting Energy Integrating (E) Photon Counting (1) Photon Counting (1) Coptimal (Tapiovaara & Wagner, PMB 1985)

Optimal Energy Weighting


- Optimal linear combination of energy-bin data
- Weighting can be performed in
 - Projection domain (projection based)Image domain (image based)
- Optimal weights proportional to contrastto-noise-variance ratio in each bin

Shikhaliev , PMB. 2005 Schmidt , Med. Phys. 2009

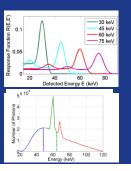
Background: CT Energyweighting

Le, et. al, Med Phys, 2010	Improvement in CNR (relative to Energy Integrating)		
	PC	PB	IB
lodine/PMMA	1.04	1.28	1.25
Hydroxylapatite/PMMA	1.02	1.30	1.35
Shikhaliev, et. al, PMB, 2011. [Improvement in CNR (relative to Energy Integrating) PB			
		PB	
lodine/acrylic		РВ 1.03 - 1.29	
lodine/acrylic Calcium/acrylic			

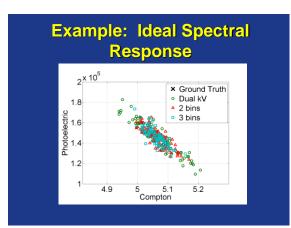
Beam Hardening Reduction

Schmidt, Med. Phys. 2009

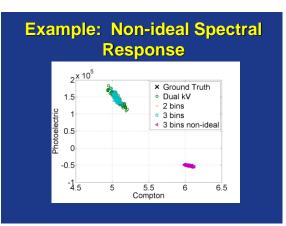
Photon-counting has several *potential* benefits, but...


Non-ideal effects

- Stochastic generation of electron/hole pairs
- Incomplete charge collection
- Charge sharing between neighboring pixels
- K-fluorescence escape
- Charge trapping
- Pulse pileup
- Temperature Drift
- Energy-bin threshold variability across pixels
- And more...

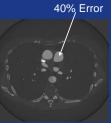

Photons detected in wrong energy bins

Flux-Independent Spectral Degradations

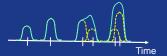

- R(E,E'): The probability of a photon with energy E' detected at energy E
- Determined by monoenergetic measurements

Schlomka et. al, PMB 2009



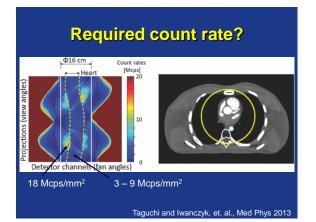


Nonideal Spectral Response



Gd Image: Ideal Spectral Response

Gd Image: Nonideal Spectral Response

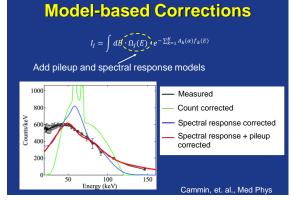

Flux-dependent Spectral Degradations (Pulse Pileup)

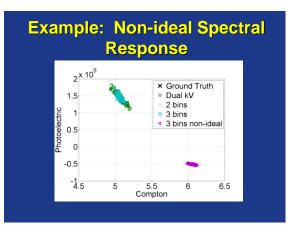
I Detected EventTrue pulseObserved pulse

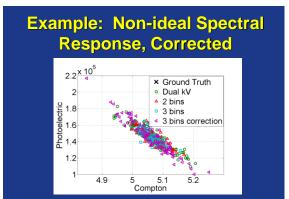
Loss of counts

- · Photons counted in incorrect energy bins
- Distortion depends on detector properties and incident flux

Status of Current Detectors

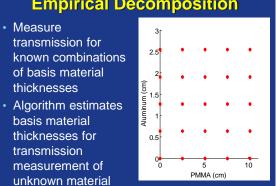

Name	Pixel Size (μm x μm)	Count rate (Mcps/mm ²)	Number of energy bins
DXMCT-1	1000 x 1000	5.5	2
DXMCT-2	500 x 500	22	4
ChromAIX	300 x 300	150	4
Hamamatsu	1000 x 1000	1-2	5
GMI CA3	400 x 1000	2 - 5	6
Medipix3RX	55 x 55	69.4	2
Medipix3RX	110 x 110	12	8
Nexis	1000 x 1000	2	5
ктн	400 x 500	200 or 600	8
Taguchi and Iwanczyk, et. al., Med Phys 201			


Potential Solutions

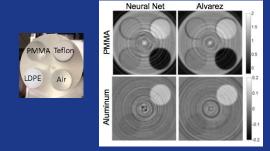

- Hardware
 - Smaller pixels to reduce pileup
 - Larger pixels to reduce flux-independent degradations
 - Layered detector / depth-dependent readout Xu et al, Nuc. Inst. Methods. Phys Res. A 2012
 - Parallel-drift structures Iwanczyk et. al., IEEE TNS, 2009
 - Charge summing Ballabriga, et. al., IEEE NSS, 2006

Potential Solutions

- System
 - Improved bowtie filters to control flux
 Szczykutowicz & Mistretta, Med Phys 2013
 Hsieh & Pelc, Med Phys 2013
 - Interior reconstruction or ROI imaging Taguchi et. al., Med Phys 2011 Schmidt & Pektas, Med Phys 2011
- Decomposition algorithms
 - Model non-ideal effects Cammin, et. al., Med Phys 2014
 - Empirical methods Alvarez, Med Phys 2011



Bias removed, but noise increased due to spectral degradations


Empirical Decomposition

- NEXIS detector (Kromek)
- [25-40], [40-50], [50-60], [60-100] keV
- Linearized MLE method Alvarez, Med Phys 2011
- Neural network empirical decomposition Zimmerman et al., CT Meeting, 2014

Empirical Decomposition

Alvarez, Med Phys 2011 Zimmerman et al., CT Meeting, 2014

Conclusions

- Photon-counting CT has potential benefits over dual-kV
 - Material decomposition with less noise / dose
 - Imaging K-edge contrast agents
 - Improved CNR through optimal weighting
- Photon-counting CT currently limited by nonideal effects
- Potential hardware, system, and algorithmic solutions under investigation

Recommended Review Paper:

K. Taguchi, and J. S. Iwanczyk. "Vision 20/20: Single photon counting x-ray detectors in medical imaging." *Medical physics* 40.10 (2013): 100901.