

Lung SBRT 4D simulation, Planning, and QA

Krishni Wijesooriya, PhD University of Virginia

Learning Objectives

UNIVERSITY VIRGINIA HEALTH SYSTEM

UNIVERSITY VIRGINIA HEALTH SYSTEM

- To understand the physiological characteristics of tumor motion in different treatment sites.
- To understand what data set to employ for ITV definition and dose calculation
- To understand the available technology for planning in SBRT
- To understand the importance in performing and End to end QA for any new motion management system introduced into a clinical program

tment of Radiation Oncolog

Motivation

- SBRT, if misdirected or used too liberally, could lead to debilitating toxicity
- Lung SBRT due to motion complicates the situation
- Capture the 4th dimension accurately
- Deliver the intended plan dose to the tumor
- Minimize healthy tissue toxicity -> escalate dose to tumor

Measurements of tumor motion

- Lung tumors: Liu HH et al IJROBP 2007; 68: 531-540 152 patients
 Up to 3cm inferior motion
 - 95% of lung tumors move <1.3cm I/S, <0.4cm L/R, and <0.6cm A/P ______</p>
 - Tumor motion is highly correlated with diaphragm motion and tumor location in $\ensuremath{\mathsf{S/I}}$
- Abdominal tumors: Bradner GS et al IJROBP 2006; 65: 554-560
 13 patients
 - Up to 2.5cm inferiorly for all tumors, motion up to 1.2 cm A/P observed for liver and kidneys
 - Mean S/I displacements: Liver 1.3cm; Spleen 1.3 cm; Kidneys 1.2cm

UNIVERSITY VIRGINIA

GTV motion inhale vs. exhale

Ideally what we want to do (IGRT)

K. Wijesooriya et al. Med.Phys. **35**, **1251 (2008)** manual vs. automated contouring results for a single patient, axial, sagittal and coronal views from Pinnacle 7.7. Red contours are for the inhale phase. Colorwash contours are for the manually drawn exhale phase . Auto contours from inhale to exhale are: black (GTV), yellow (cord, heart), pink (esophagus), white (lungs).

Department of Radiation Oncolog

UNIVERSITY VIRGINIA HEALTHSYSTEM

Deformable Image Registration

- Technique by which a single moving voxel is matched on CT slices that are taken in different phases of respiration
- The treatment is planned on a reference CT usually the end expiration (for Lung)
- Matching the voxels allows the dose to be visualized at each phase of respiration
- Several algorithms under evaluation:
 - Finite element method
 Optical flow technique
 - Optical flow technique
 - Large deformation diffeomorphic image registration
 Splines thin plate and b

UNIVERSITY VIRGINIA HEALTH SYSTEM

4D Radiotherapy is still clinically prohibitive

- Enormous requirements on:
 - Personnel
 - Computational resources
 - Time resources
- New class of uncertainties
- Calculated dose is good only for a given respiratory pattern –respiratory motion unpredictable
- Clinical benefit is still unknown

Department of Radiation Oncology

Some examples of limitations.

- Computing resource intensive Parallel calculations require computer clusters at present
- No commercial TPS allows 4 D dose calculation
- Respiratory motion is unpredictable calculated dose good for a certain pattern only
- Incorporating respiratory motion in dynamic IMRT means MLC motion parameters become important constraints
- Tumor tracking is needed for delivery if true potential is to be realized
- The time delay for dMLC response to a detected motion means that even with tracking gating is important

Department of Radiation Oncolo

UNIVERSITY VIRGINIA HEALTH SYSTEM

UNIVERSITY VIRGINIA HEALTH SYSTEM

Simplified Approach to 4D Treatment Planning

- 4DCT acquisition
- Accurate tumor volume definition that encompasses all tumor locations – motion envelope
- A 3D plan performed on the ITV + margins
- On an appropriate reference dataset

Accounting for respiratory motion at simulation

- Respiratory correlated CT/4DCT
 - Cine CT couch stationary while repeat CT for images acquired corresponding to different phases of respiratory cycle, couch incremented
 - Low D. et al. Med Phys. 2003; 30:1254-1263
 - Pan T. et al. Med Phys. 2004; 31: 333-340
 - Helical CT reducing the pitch 0.5-0.1, and adjusting CT parameters such that CT beam on for at least on respiratory cycle at each couch position.
 - Keall P J. et al. Phys. Med. Biol. 2004; 49:2053-2067
 - Pan T. et al. Med Phys. 2005; 32: 627-634

Department of Radiation Oncolo

UNIVERSITY VIRGINIA HEALTH SYSTEM

4D CT Image Definitions

Helical CT: Helical CT without 4D CT. Snap shot of the anatomy.

Anatomy. MIP (Maximum Intensity Projection image) : Reflect the highest data (hyper-dense) value encountered along the viewing ray for each pixel of volumetric data, giving rise to a full intensity display of the brightest object along each ray on the projection image

So if you are interested in identifying high contrast objects (lung tumor, stents etc..) better to have a MIP

UNIVERSITY VIRGINIA HEALTH SYSTEM 4D CT Image Definitions

MinIP (Minimum Intensity Projection image): projections reflect the lowest data (hypodense) value encountered along the viewing ray for each pixel of volumetric data.

UNIVERSITY VIRGINIA HEALTHSYSTEM

Irregular patient breathing - regular and reproducible breathing by coaching CT image reconstruction algorithm Resorting of reconstructed CT images with respiratory signal (phase/amplitude or combination of two)

Depar	tment <i>of</i> Radi	ation Oncology	UNIVERSITY VIRGINIA HEALTHISYSTEM
Amplitude binni	ng is better tha	an phase binning	
	Patient A	Patient B	
Figure J	(b) 2. Coronal hang images for patient	(d) (A (figures 12(a) and (b)) at bin 35%.	1.5%, and patient
B (Gam the box the box have no on the d arrow is Abdelnour AF. Nehmeh SA	s 12(c) and (d)) at bin 65% ± 5% m images show phase binning at m of figure 12(a) and the middle visible artifacts (except for missin sest wall and along the torso. The pointing. A. Pan T. et al. Ph	i: Top images show a case of amplitude the same respective bins. Note the m of figure 12(c). While the top image alices), the phase binned image 12(b) diaphragm of figure 12(d) suffers and asset and amplitude the same state of the same state o	le binning, while issing slices near sure smooth and exhibits artifacts malies where the binning for 4D-CT
imaging. Phys Med Biol 20	007;52:3515-352	29.	

MIPs can be problematic

- Drawback for target delineation: where background and tumor have similar HU, tumor is not as clearly defined
- Example: Caudal extent of ITV may not be correct due to overlap with diaphragm
- Review individual phases
- For this case, send additional scans, e.g. max inhale and max exhale scans to help MD assess tumor motion

UVA planning for lung

UNIVERSITY VIRGINIA HEALTH SYSTEM

- Scan the full thorax/abdomen
- Obtain the 10 phased 4D CT image sets
- Reconstruct a MIP image Using the 10 4D CT image sets – if treat with no gating
- Reconstruct a MIP image Using the gated window (eg:30% -70%)4D CT image sets – if treat with gating
- Plan on average intensity image with ITV defined from MIP/PET images

Left – FFF; Right –FF. Notice the better conformity of the 50% isodose (green) line in FFF beams in all three dimensions.

	for	hue		D	DT
	101	Iui	ig c	סכ	ΓI
Parameter	Mean	STD	Mean	STD	p-value
	Percentage	lifference	Absolute dif	ference	10.000
Prescription Isodose Surface Coverage:	r ereentope t				
% PTV covered by 100% Rx dose:	-0.01%	0.04%	-0.01	0.03	0.330
% PTV covered by 90% Rx dose:	0.00%	0.05%	0.00	0.05	0.834
Target Dose Heterogeneity:					
MAX point dose (Gy):	-0.31%	2.09%	-0.27	1.83	0.520
High Dose Spillage:					
Location: 105% volume/PTV volume	-0.09%	0.17%	-0.01	0.03	0.028
Volume: Rx isodoe volume/PTV volume	-0.98%	1.67%	-0.01	0.02	0.017
Low Dose Spillage:					
Max dose > 2.0 cm from PTV:	-0.81%	2.97%	-0.47	1.71	0.237
Volume:50% Rx isodose volume/PTV	3.01%	3.336	0.13	0.14	0.001
Lung Constraints (Barallel Tissue)	-3.01%	3.3370	-0.15	0.14	0.001
V20.0 Gru(es)	3 399/	3.08%	.2.49	6.74	0.000
V12.4 Gr (cc)	-2.30%	1 72%	-7.05	9.42	0.002
V11 6 Gy (cc)	-2.20%	1.44%	-6.95	7.50	0.001
Internal Done (Gy L)	-2.2076	1.4470	-0.63	1.39	
Normal tissue	-7.71%	2.00%	.0.76	0.84	0.001
autorinari dasde	2.421/0	2.0070	-0.70	0.04	0.000
psilateral lung	-2.43%	1.46%	-0.26	0.21	0.000

0915 Reductions with FFF

- Reductions (mean, STD, *p*-value, maximum) are:
- High dose spillage location (-0.09%, 0.17%, 0.028, -0.57%)
- High dose spillage volume (-0.98%, 1.67%, 0.017, -6.1%)
- Low dose spillage volume (-3.01%, 3.33%, 0.001, -11.59%)
- V20 (2.38%, 3.08%, 0.032, -8.77%)
- V12.4 (2.27%, 1.73%, 0.003, -4.99%)
- V11.6 (2.26%, 1.44, 0.001, 5.00%)

FF \/MAT	for	lur	na S	RF	5,1
			iy c		
Parameter	Mean	STD	Mean	STD	p-value
	Percentage of	difference	Absolute diff	erence	
Prescription Isodose Surface Coverage:					
% PTV covered by 100% Rx dose:	0.00%	0.00%	0.00	0.00	na
% PTV covered by 90% Rx dose:	-0.10%	0.33%	-0.10	0.34	0.352
Target Dose Heterogeneity:					
Point dose @ iso center (Gy):	-0.04%	0.02%	0.01	1.32	0.980
High Dose Spillage:					
Location: 105% volume/PTV volume	-0.11%	0.22%	-0.02	0.03	0.150
Volume: Rx isodoe volume/PTV volume	-0.74%	1.40%	-0.01	0.02	0.131
Low Dose Spillage:					
Max dose > 2.0 cm from PTV:	-0.16%	4.89%	0.23	1.81	0.684
Volume: 50% Rx isodose volume/PTV	.3 27%	3.87%	-0.15	0.19	0.026
Lung Constraints (Parallel Tissue)					
V20.0 Gy	-3.63%	2.97%	-4.20	3.51	0.004
V13.5 Gy	-4,47%	4,48%	-10.01	13.96	0.041
V12.5 Gy	-4.29%	4.51%	-11.34	16.29	0.046
Integral Dose (Gy.L)					
Normal tissue	-2.08%	1.87%	-0.57	0.49	0.005
Ipsilateral lung	-2.57%	1.74%	-0.25	0.20	0.004

Separtment of Kadiation Onco

UNIVERSITY VIRGINIA

- 0813 Reductions with FFF
- Reductions (mean, STD, *p*-value, maximum) are:
- Low dose spillage volume (-3.27%, 3.87%, 0.026, -11.23%)
- V20 (3.63%, 2.97%, 0.004, 9.88%)
- V13.5 (4.47%, 4.48%, 0.04, 12.77%)
- V12.5 (4.29, 4.51, 0.04, 11.75%).

UNIVERSITY VIRGINIA HEALTH SWITT

1. What type of image/images should be used for tumor volume delineation when the lung tumor is attached to the diaphragm?

7% 1. Maximum intensity projection image (MIP)

20% 2. MIP image and the phase images of inhalation phases

10% 3. Time average (untagged) image30% 4. 3DCT image with no time information

27% 5. Minimum intensity projection image

partment of Radiation Oncology

UNIVERSITY VIRGINIA HEALTH SYSTEM

UNIVERSITY VIRGINIA

- Answer: 2
- References: Underberg RWM et al IJROBP 2005; 63:253-260

epartment of Radiation Oncolo

What dataset should be chosen for planning?

- Dose computation should be close to cumulative 4D dose computed using all datasets
 - Rosu M, Balter JM, Chetty JJ, Kessler ML, McShan DL, Balter P, et al.
 How extensive of a 4D dataset is needed to estimate cumulative dose distribution plan evaluation metrics in conformal lung therapy? Med Phys 2007;34:233–45.
- Anatomy of this image set should correlate well with the tumor image of pre-treatment image (CBCT/MVCT)
- Average intensity image should be used for planning

ent of Radiation Oncology UNIVERSITY VIRGINIA Health System

2. What is the optimum dataset for dose calculation of a lung Tx?

10% 1. 3DCT image which carries a snap shot of the tumor position
 2. Maximum intensity projection image (MIP)
 23% 3. Minimum intensity projection image (Minip)
 30% 4. Time average (untagged) image
 20% 5. CBCT image

Department of Radiation Oncology

• Answer: 4

- References:
- MA Admiraal, D.Schuring, CW Hurkmans "Dose calculations accounting for breathing motion in stereotactic lung radiotherapy based on 4D-CT and the internal target volume", Radiotherapy and oncology 86 (2008) 55-60
- Yuan Tian, Zhiheng Wang, Hong Ge, Tian Zhang, Jing Cai, Christopher Kelsey, David Yoo, Fang-Fang Yin. "Dosimetric Comparison of Treatment Plans Based on Free Breathing, Maximum and Average Intensity Projection CTs for Lung Cancer SBRT." Med Phys 39:2754-2760 (2012)

tment of Radiation Oncology

UNIVERSITY VIRGINIA HEALTH SYSTEM

UNIVERSITY VIRGINIA HEALTH SYSTEM

To ensure an Accurate Externally Gated Treatment, QA steps

During patient setup tumor home position at this fractionation should be matched to the reference home position – image guidance (x-ray, Ultrasound, implanted E.M transponders), <u>lung: tumor</u> or diaphragm, liver: implanted fiducial markers

During Tx delivery, measures should be taken to ensure constant tumor home position (tumor should be at the same position when the beam is on) <u>breath</u> coaching, visual aids- stable EOE position by two straight lines for amplitude

UNIVERSITY VIRGINIA HEALTH SYSTEM

UNIVERSITY VIRGINIA HEALTH SYSTEM

- Surrogates used to generate gating signals

 1.
 External surrogates: markers placed on the patients outside surface

 1.
 Varian RPM system

 2.
 Active breathing control using spirometery

 3.
 Siemens Anzai pressure belt: bellows system

 4.
 Medspira respiratory monitoring bellows system

Three Phases of 4D QA

•Typical QA measures

Initial testing of equipment and clinical procedures: CT scanner, fluoroscope, linac, gating.....

•Frequent QA examination during early stage on implementation

UNIVERSITY VIRGINIA HEALTH SYSTEM 4DCT scan QA

9 centers, 8 Philips, siemens,GE CT scanners, 1 Siemens PET-CT scaner
 Widely varying imaging protocols
 No strong correlation found between specific scan protocol parameters and

observed results

•Average MIP volume deviations 1.9% (φ15, R =15mm), and 12.3% (φ15, R =25mm), -0.9% (φ30, R =15)

•End expiration volume deviations – 13.4%, φ15; 2.5%, φ30

•End inspiration volume deviations – 20.7%, φ 15; 4.5%, φ 30 •Mid ventilation volume deviations – 32.6%, φ 15; 8.0%, φ 30

•Variation in mid-ventilation origin position – mean, -0.2mm; range -3.6-4.2 •Variation in MIP origin position – mean, -0.1mm; range, -2.5 -2.5 •Range motion is underestimated – mean, -1.5mm; range, -5.5-1

Annual QA – 4DCT

Measurement Setup: Set the motion range 10 mm –SI of Quasar phantom and image using 4DCT (slice thickness: 0.2 cm) synchronized with RPM.

Annual QA – Treatment with gating

Annual QA – Temporal accuracy of phase/amplitude gating TG 142

÷						
		period	gating time (s)	diff (ms)	Name Inc.	
	motion phantom	5.4	2.48			
	imaging		2.55	-60	2 7	
	RPM		2.50	20	× . ×	h m heres
					Dealing Partiel 1.2 cm.	have been been been been been been been be

TG-142 tolerance: 100 ms of expected

Measurement Setup: Using OmniPro IMRT software, set 20 ms/ frame (50Hz) and measure the images synchronized with RPM measurement. RPM signal has a time resolution 33ms/frame (30 Hz)

Annual QA – Treatment with gating TG 142

Depth Measured	Beam Energy	Electrometer Readings	Average Reading	Corrected Readings	Nominal Value	Percent Difference	Percent Difference with gating
		17.54	17.54				
Cube (5.0cm)	6 MV	17.54	17.54	18.02	17.71	1.8	
Cube (10.0cm)	Energy Reading	13.15	"Ratio =	0.750	0.753	-0.4	
Cube (5.0cm) 15 M		19.31			19.56	1.4	
	15 MV	19.30	19.31	19.83			
Cube (10.00m)	Reading	15.40	Ratio =	0.798	0.799	-0.2	
	6 MV Gating	17.55	17.55	18.03	17.71		output
Cube (5.0cm)		17.54				1.8	0.0
							energy
Cube (10.0cm)	Energy Reading	13.16	*Ratio =	0.750	0.753	-0.4	0.0
	15 MV Gating	19.28				.56 1.3	output
Cube (5.0cm)		19.30	19.29	19.82	19.56		0.1
							energy
Cube (10.0cm)	Energy Reading	15.42	Ratio =	0.799	0.799	0.0	-0.2

Prior to establishing a lung SBRT program in your clinic, how do you verify the accuracy of motion management program in your clinic?

- **20%** 1. Perform an end to end QA requesting a RPC motion phantom for lung or Quasar motion phantom with lung density material
- 27% 2. Perform end to end QA using your IBA matrixx system
- % 3. Perform end to end QA using your Delta4 device
- 13% 4. Perform end to end Qa using your annual scanning system
- 10% 5. Meaure the energy of the machine with and without gating

epartment of Radiation Oncology

UNIVERSITY VIRGINIA HEALTH SYSTEM

Answer: 1

References:

- •• TG 101
- Timmerman R. et al. "Accreditation and quality assurance for radiation therapy oncology group: Multi clinical trials using stereotactic body radiation therapy in lung cancer", Acta oncologica, 45:779-786 (2006)

Department of Radiation Oncolo

UNIVERSITY VIRGINIA HEALTH SYSTEM

UNIVERSITY VIRGINIA HEALTH SYSTEM

1. Motion envelope should be measured prior to ITV definition

Summary|Conclusion

- 2. Particular care should be given to tumors attached to chest wall/diaphragm
- 3. Planning CT should be a time averaged CT image
- 4. Gated image reference position should be verified prior to Tx
- 5. End to end QA program should be established prior to going clinical

Acknowledgements

Thanks to University of Virginia Dept. of Radiation Oncology!