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Patients 

QI: MRI Techniques 

 Dynamic susceptibility contrast (DSC) imaging 

 Dynamic contrast enhanced (DCE) imaging 

 Diffusion weighted (DWI), diffusion tensor (DTI), 
intravoxel diffusion kurtosis imaging 

 Spectroscopy (e.g., 1H, 31P) 

 Quantitative susceptibility and tensor imaging 
(QSI, QSTI) 

 Hyperpolarized nuclei imaging and spectroscopy 
(e.g., 13C, 3He, 129Xe) 
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MR QIB 

 MR image acquisition protocols 
• Optimized, harmonized, following QIBA profiles 

• QA/QC 

 Physiological parameter quantification from 
raw image data 

 

 Application in clinical problems 
• Algorithms to extract meaningful “features”/metrics 

• Models in relating  quantitative image metrics with clinical 
endpoints  
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MR QIB: DSC imaging (brain) 

Cao AAPM 2016 5 

 Dynamic T2*/T2-w images during a bolus of Gd injection 

 

 

 

 

 

 

 Physiological parameters, CBV, CBF, MTT, Ktrans (vascular 
leakage), ve(extravascular extracellular space) 

• standard models 
• CBV Rosen MRM 1991 

• CBF Ostergaard MRM 1999 

• … 

 

 

PK model 

Challenges: CBV in GB 
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 Challenges in quantitative CBV 

• Contrast effect on T1 (long T1) 

• Vascular leakage effect on CBV estimation 

• Bias and variation from different scanners, field 
strengths (1.5 T vs 3 T), and sequences 

 

 Possible solutions 

• Minimizing T1 weighting by acquisition 
parameters, pre-loading contrast  

• Correction for contrast leakage (Weisskoff 
1994, Johnson 2003, Cao 2006, Bjornerud 
2011) 

• Standardized CBV (Bedekar MRM 2010) 

 

Paulson and Schmainda 2008  

DR2* 

High leakage

Medium leakage

No leakage

High leakage

Medium leakage

No leakage
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MR QIB: DCE imaging 

 Dynamic T1W images during a bolus of Gd injection 

 

 

 

 

 

 

 Physiological parameters: Ktrans, Vp, Ve, BF 

• Standard models 
• 2 or 3 parameter Toft model 

• dual-input single-compartment model in the liver 
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PK model 

artery 

tumor 

AIF 

Challenges: DCE quantification 

 Challenges in DCE quantification 

• Reliable and reproducible arterial input function 
– T2* effect, B1 field variation, inflow effect, temporal and spatial resolution, water 

spin exchange between intra- and extra-cellular molecules … 

 Possible solutions 
– Dual-echo to estimate and correct T2* effect (Bazelaire, Eur Radiol 2006) 
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T2* effect at the 1st pass AIF from aorta at 3T 

Challenges: DCE quantification 

 Challenges in DCE quantification 

• Reliable and reproducible arterial input function 
– T2* effect, B1 field variation, inflow effect, temporal resolution, water spin 

exchange between intra- and extra-cellular molecules … 

 Possible solutions 
– Dual-echo to estimate and correct T2* effect (Bazelaire, Eur Radiol 2006) 

– Post-processing correction (Wang, JMRI 2012) 

 

 

9 

Corrected AIF  

Uncorrected AIF 
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Challenges: DCE quantification 

 Challenges in DCE quantification 

• Reliable and reproducible arterial input function 
– T2* effect, B1 field variation, inflow effect, temporal resolution, water spin 

exchange between intra- and extra-cellular molecules … 

 Possible solutions 
– Dual-echo to estimate and correct T2* effect 

– Post-processing correction (Wang, JMRI 2012) 

– Contrast agent Phase-effect (Akbudak MRM 1997) 
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AIFphase from MRI vs AIF from CT 

 12 patients with prostate DCE MRI and CT 

Cao AAPM 2014 11 
Korporaal and van der Heide, MRM 2011 

Challenges: DCE quantification 

 Challenges in DCE quantification 

• Reliable and reproducible arterial input function 
– T2* effect, B1 field variation, inflow effect, temporal resolution, water spin 

exchange between intra- and extra-cellular molecules … 

 Possible solutions 
– Dual-echo to estimate and correct T2* effect 

– Post-processing (Wang, JMRI 2012) 

– Contrast agent Phase-effect (Akbudak MRM 1997) 

– Slow contrast injection rate to reduce T2* effect 

– Universal AIF 
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Trade-off!  
Simple and practical  

vs fundamentally sound, accurate 
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MR QIB: DW Imaging 

 DW images acquired with multiple b values and 
gradient directions 

 

 

 

 

 

 Physiological parameters: ADC, Anisotropy 
diffusion indices (FA, AD, RD), IDK indices 
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model 

ADC FA 

Challenges: ADC quantification  

 Challenges 
• Non-monoexponential -> what b values should be? 

• Separation of diffusion from perfusion 

• High noise 

• Geometric distortion and artifact from EPI acquisition 

 Possible solutions 
• Intravoxel incohent motion model (Le Bihan 1988) 

 

• Using low b (100-500) values instead b=0 for two-
point fitting 
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QIB for Therapy Assessment 

 To develop a QIB for predicting tumor tx 
failure/progression or response/outcome 

 

 Sensitivity and specificity  

• Clinical end points  

• Specific for tumor and therapy types 

 

 Repeatability and Reproducibility 

• Separation of a true change from variation 
• Barnhart, Barboriak, Trans Oncol 2009, & Stat Methods Med Res  
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Repeatability of DT indices  

 Assess true changes in WM structures of individual patients 
after receiving brain RT and their associations with late 
neurocognitive dysfunctions (Nazem-Zadeh,PMB 2013) 

• Algorithms segmented corpus callosum, cingulum, fornix from DTI 

 

 

 

 

• Repeatability coefficient (RC) estimated  

    from test and retest DTI data (NBIA)  

    of 12 patients 

• A true longitudinal change DIt% in an  

        individual patient with 95% confidence 
Cao AAPM 2014 16 

DIt%-RCL 

DIt%+RCu 

DIt% 

0 

True change  

Is a RD increase a true change? 

Radial Diffusivity Cingulum Fornix CC  

RC%(RCl,RCu) 3.4(2.4,5.6) 3.0(2.1,4.9) 5.9(4.3,9.8) 

17 

RCl 

 

-RCu 

Fornix 

86% and 100% of the patients had RD changes in the fornix beyond  

the uncertainty range 6 and 18 months after RT, respectively. 

QIB for Tumor Therapy Assessment 

 Complexity 

• Tumor biology 

• Imaging techniques 

• Tumor response to therapy  
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High CBV: Prognostic Indicator 

in Gliomas 

Cao AAPM 2014 19 

(month) 

P=0.002 

Small fractional TV w High-CBV 

Great fractional TV w High-CBV 

Cao, IJROPB, 2006 Law, Radiology 2008 

High-grade gliomas 

Mean rCBV 

Gliomas 

Vascular Permeability: Prognostic 

indicator for high-grade gliomas 

 Large vascular 
leakage volume, 
reflecting 
angiogenesis, 
was associated 
with worse OS. 
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0.1 
mi

n-1 

0.005 min-1 

0.05 min-1 

Cao, Cancer Research, 2006 

Vascular leakage volume 

Vascular Normalization Index 

 Patients:  recurrent GB 
 Therapy: cediranib, anti-

VEGF agent 
 VNI 

– Changes in Ktrans, CBV, and 
plasma collagen IV 1 d after the 
first treatment 

 
 
 

 Predictors for OS and TPS 

Cao AAPM 2014 21 

Sorensen, Cancer Research 2009 

]logloglog[ collIVcCBVbKaVNI trans DDD

Pre  Post  
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Non-enhanced Hypercellularity 

Component in Glioblastoma 
The non-enhanced, hypercellularity component of GB could 

be treated inadequately 

• Surgical resection and radiation therapy could be limited to the 
enhanced gross tumor volume, due to the ill-differentiation of non-
enhanced tumor, edema and normal tissue, and  concerns of 
complications. 

 

• The undisrupted blood-brain-barrier can result in a low 
concentration of TZM in the non-enhanced tumor region. 

 

  Incapable to detect non-enhanced hypercellularity 
components might cause mis-diagnosis of response and 
progression  
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Challenges 

 To differentiate hypercellularity components of GB 
from high-vascular components, edema, and normal 
tissue using conventional MRI and ADC (b= or < 
1000 s/mm2) 

Cao AAPM 2014 23 

Post-Gd T1WI FLAIR Conventional ADC

Hypercellularity by high b DWI 
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DWI b=2000 DWI b=1000 DWI b=3000 

Red: post-Gd GTV 
Green: FLAIR GTV 

Yellow: b3000 HCV 

ISMRM Pramanik, Parmar, Cao 2014 
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Radiation Coverage & Recurrence 
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Recurrence 

4 M post RT 

Red: post - Gd GTV 

Green: FLAIR GTV 

Yellow: b3000 HCV 

Dark Pink: 95PDV 

Enhanced and non-enhanced HCV  
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HCV  

Median: 7.9 cc 

Range: 0.1-67.1 cc 

Red: post-Gd GTV 
Cyan: b3000 HCV 

The HCVs extended beyond the FLAIR GTVs in 6 patients 
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Median: 0.4 

Range: 0.02-0.97 

Non-enhanced Fraction of HCV  

Pramanik, Parmar, Cao, ISMRM 2014 

Heterogeneity in Glioblastomas 
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Post-Gd T1W FLAIR  

ADC C11MET PET CBV/CBF Vascular Permeability 
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What we have learned 

 Tumor heterogeneity  
• The mean value of a physiological image parameter in the 

tumor is not very useful for treatment assessment 

 Correlations between multiple physiological and 
metabolic image parameters (eg, BV vs BF) 
• The biological processes involved may be different 

• Additive value ? 

 Predictive of physiological image parameters 
• Not all image parameters have predictive values for therapy 

assessment or are useful to define a boost target 

Cao AAPM 2014 28 

Hypotheses 

Heterogeneous therapy response of a tumor 
could be primarily due to biological 
heterogeneity in the tumor 

 

The most aggressive or resistant sub-volume 
in a tumor could predominantly determine 
therapy outcome of the whole tumor 
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What we need 

 Quantitative Image Tools  
• Characterize tumor heterogeneity 

• Determine complementary or redundant physiological 
image parameters 

• Create quantitative image metrics 

• Predictive for treatment failure  

• Highly reproducible 

• Candidate to be  a radiation boost target  

Cao AAPM 2014 30 
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How to extract sub-volumes 

from a heterogeneous tumor 

Cao AAPM 2014 31 

feature space 
f1 

f2 
BV 

ADC 

bad 

characterize “bad” features  

in the tumor 

Whether the subvolumes 

formed by the “bad” features 

predict outcome (treatment 

failure) 

Whether “bad” feature-defined  

subvolumes decrease  or  

increase after receiving  

treatment? 

Fuzzy subvolume  

model 

HNC: ChemoRT 
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7 wk 70 Gy RT+ chemo 

DCE MRI DCE MRI 

The aim is to test whether the poorly perfused subvolume of the tumor  

and persisting during the early course of RT is associated with LR failure. 

Poorly Perfused Sub-Volumes 

in Advanced HN Cancers 

Cao AAPM 2014 33 
Wang, et al Med Phys 2012 

Local Failure Local Control 

Poorly perfused Subvolume 

BV 
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Persisted Poorly Perfused 

Subvolume in HNC 

Cao ARS 2013 34 

Pre RT 2 Wk during RT 

The large sub-volumes of the tumors with low BV (blue color) pre-Tx and  

during the early course of CRT (2 weeks)  are significantly associated with LF.  

Prediction of Local Failure 

Cao AAPM 2014 35 
Wang, et al Med Phys 2012 

 

Association with Pattern Failure 
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Poorly-perfused  

Subvolume pre RT 
FDG 3 mon post RT 
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Subvolume of the Tumor with 

High Cellularity 
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3.2x10-3 mm2/s 

Low ADC 

GTV 

ADC map pre-RT 

Additive Value of Diffusion 

Imaging in HNC 
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Hypoperfused and high cellularity (low ADC) 
subvolume -> high risk for failure? 

27 ml/100g 3.2x10-3 mm2/s 

Blood Volume                               ADC    

Bias and Variation Between 

Imaging Systems 

 Scanners, sequences, 
acquisition parameters… 

 DCE study in HN cancers 

• Initiate on a 3T Philips and 
continue on a 3T Siemens 

• Recalibration using histograms 

• Cerebellum as a control region 

• N=9,Mphi, SDphi and N=11,Msie, Sdsie 
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Intrahepatic Cancer: SBRT 

Cao AAPM 2014 40 

SBRT 5 x 11Gy  

DCE MRI DCE MRI 

Aim: test whether an increase in the subvoluem of the tumor with  

elevated arterial perfusion after 60% of treatment of SBRT is  

associated progression. 

Perfusion in Hepatic Cancer 

Cao AAPM 2014 41 

250 ml/100g/min 250 ml/100g/min 45 ml/100g/min 

Total perfusion Hepatic arterial perfusion Portal venous  perfusion 

0 

tumor 

Normal tissue 
0 0 

tumor 

Normal tissue 

Normal liver: ~20% arterial perfusion and ~80% portal venous perfusion 

Intrahepatic cancer: elevated arterial perfusion and decreased portal venous perfusion 

Hepatic cancer: high arterial 

perfusion subvolume 

Cao AAPM 2014 42 

progressive 

responsive 

Wang, JIROBP 2014 

After 60% planned tx 
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Sensitivity and Specificity 

Cao AAPM 2014 43 

Prediction of progression  

Summary 

 Optimize, harmonize and standardize MR image 
acquisition protocols  
 High quality images 

 

 Quantify physiological parameters  
 high repeatability  

 high sensitivity and specificity 

 

 Apply to clinical problems 
• Algorithms to extract meaningful “features”/metrics 

• Statistical and ML models in relating  quantitative metrics with clinical 
endpoints  
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