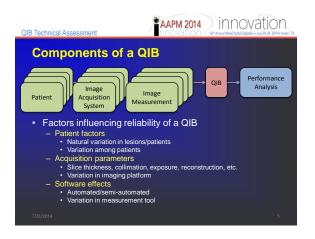


AAPM 2014 innovation

# **Outline of Talk**

- Purpose
- · Main components of technical assessment
- Example Analysis
- Summary

AAPM 2014 innovation

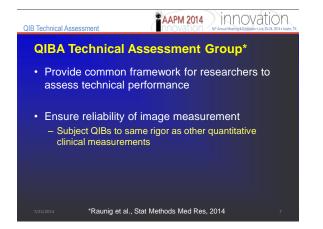

# QIB Technical Assessment Purpose

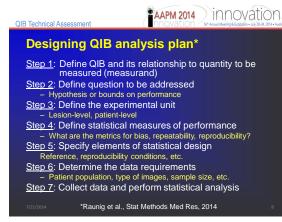
 Discuss QIBA consensus on technical assessment of QIB performance\*

 Include example analysis from our research

\*Raunig et al., Stat Methods Med Res, 2014







# **QIB Technical Assessment**

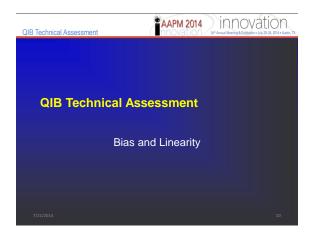
- QIBs typically evaluated for reliability under study conditions
- Problem: QIB performance evaluation often different from study-to-study
  - Partly due to differences in data set, etc.
  - Also due to analysis differences
    - Ad hoc metrics
    - Inconsistent use of statistical metrics
    - Inconsistent terminology

/21/2014

QIB Technical Assessment






AAPM 2014 innovation

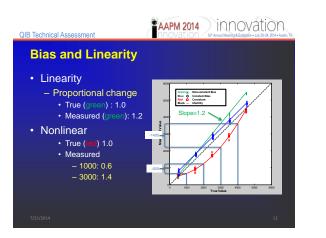
# Basic Technical Assessment Components

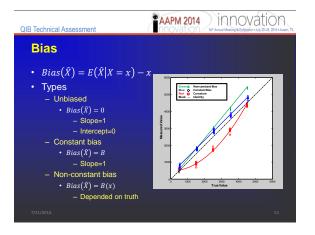
• Bias/Linearity

**QIB** Technical Assessment

- Repeatability
- · Reproducibility







AAPM 2014 innovation

# **Bias and Linearity**

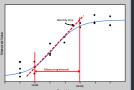
- Relationship of QIB to reference standard (measurand)
  - $E(\hat{X}|X=x) = f(x)$
  - - X: Reference standard (measurand)
- Linearity
  - On average, change in x reflects a <u>proportional</u> <u>change</u> in  $\hat{X}$

6/26/2013 Pe







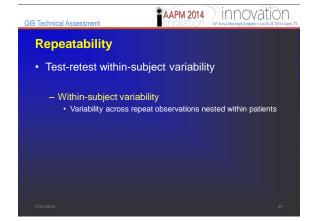





# **Bias and Linearity Assessment**

- Visually assess measured vs reference
   Define limits of
  - quantitation
- Bias analysis

   Utilize multiple replicates for multiple "truth" values




- Linearity analysis

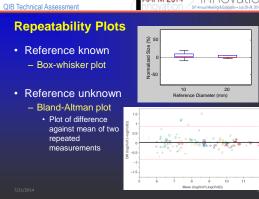
   Test for linearity
  - Sequential polynomial testing

7/21/2014





AAPM 2014 innovation


# **Repeatability Metrics**

- Within-subject variance
  - $-\sigma_w^2 = E_p \left( E_r \left( (y_{ij} \mu_i)^2 \right) \right)$ Repeat observations, j = 1, ..., k
    Patient, i = 1, ..., n
- Repeatability Coefficient
  - Variance of difference in two independent measurements •  $RC = 1.96\sqrt{2\sigma_w^2}$ , for normal data - Limits of Agreement

  - LOA = [-RC, RC]
- Others

  - Intra-class correlation (ICC)
    Within-subject coefficient of variation (*wCV*)

### AAPM 2014 innovation









# Reproducibility

- Variability of QIB under differing experimental conditions
- Evaluate QIB performance under varied but controlled conditions
  - Potential reproducibility conditions
    - Across scanners
    - Across QIB measurement tools
    - Across sites
    - Across readers/clinicians

7/21/201

# AAPM 2014 innovation

# **Reproducibility Metrics**

- Within-subject reproducibility variance  $-\sigma_{Reproducibility}^{2} = \sigma_{Repeatability}^{2} + \sigma_{between-conditions}^{2}$
- Reproducibility Coefficient
  - Variance for difference in two independent measurements

```
• RDC = 1.96 \sqrt{2\sigma_{Reproducibility}^2}, for normal data
```

```
- Limits of Agreement
```

- $LOA_{RDC} = [-RDC, RDC]$
- Others


QIB Technical Assessment

- Concordance correlation (CCC)

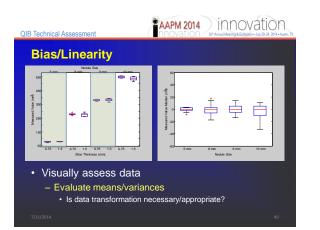
```
/21/2014
```

| QIB Technical Assessment                                                                                                                                                                     | APM 2014<br>INDVation<br>50 <sup>4</sup> Annual Meeting & Exhibition - July 20-34, 2014 - Audin, TX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reproducibility Plots                                                                                                                                                                        | (a) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <ul> <li>2 Factors         <ul> <li>Scatter plots</li> <li>Regression                 <ul> <li>Slope= 0.97</li> <li>Intercept= 0.09</li> <li>Bland-Altman plot</li></ul></li></ul></li></ul> | Big of the second secon |
| 7/21/2014                                                                                                                                                                                    | det 1 k 2 k 2 k 1 k 4 k 4 k 4 k 4 k 4 k 4 k 4 k 4 k 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

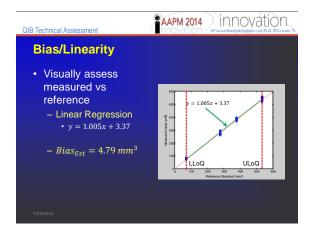




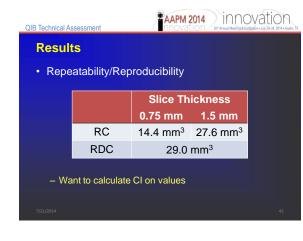
# AAPM 2014 innovation


# QIB Technical Assessment Purpose

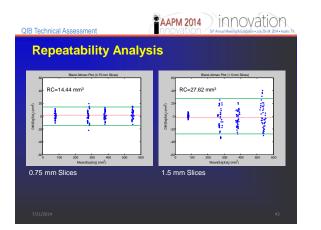
- Evaluate technical performance of a nodule volume estimation tool
  - Segmentation-based nodule volume estimation tool
  - Reproducibility condition
    - CT slice thickness ranges includes 075 mm & 1.5 mm




### AAPM 2014 innovation **QIB** Technical Assessment **Study Design** Phantom Image collection ţ protocols 100 mAs - 10 repeat acquisitions 16×0.75 mm Acquisition т 0.75 mm 1.5 mm Detailed Detailed Reconstruction


















| QIB Technical Assessment | AAPM 2014<br>MOVation 34 Annual Meetings Ecologian - August |  |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Reproducibility Analysis |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                          | 28.95 mm <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                          | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |



## Summary

- · Main components of QIB technical assessment
- Argent components of QIB technical asse
   Bas/linearity analysis
   Reproducibility analysis
   Others
   Identification of significant factors/subgroups
   ....
- Challenging to maintain consistency across studies
  - Phantom/clinical data
    Transformation of data

  - Reference standard
    Is test-retest data available?
    Reproducibility conditions

# AAPM 2014 innovation

# Acknowledgement

QIB Technical Assessment

- Qin Li and Marios A. Gavrielides for their efforts on the FDA QIB projects
- Qin Li for her efforts in developing this presentation