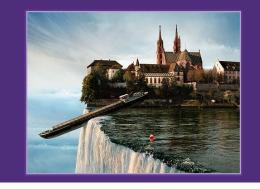


Jacob (Jake) Van Dyk

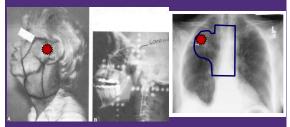
Western Medicine Dentistry

Schulich

Disclosures


• None ... except I am involved with ...

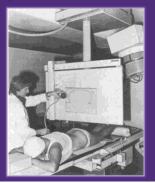
The Flat Earth Perspective ... Artistic


The Flat Earth Perspective ... Scary!

The Past and the Present in RT Phase Time Technology Issues/Benefits				
1 1895-1940s	100-400 kV Brachytherapy	Non-uniform dose at depth, skin dose, bone dose Ra/Rn, systems of calculations		
2 1950s	Cobalt-60 4-8 MeV linacs ≥20MeV betatrons	Skin sparing, uniform dose at depth, manual treatment planning		
3 1960s-70s	Multi-energy linacs TP Systems Simulators	Isocentric machines, more physicists, detailed QA		
4 1970s-80s	CT, 3D-CRT Afterloading	Improved targeting Improved dose computations		
5 1990s-preser	nt IMRT, IGRT, ART, MRI/MRS, PET, SPECT	MLC, on-board imaging, 4D, US, PET/CT, dose escalation, arc therapy, gating, smaller margins		

The Flat Earth Perspective: Radiation Therapy in 1960s & 1970s

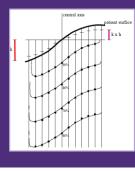
• 2-D films for planning


Conventional RT

- Tumor volume and critical structures drawn on orthogonal films
- Simple setups with
 - 2, 3, or 4 fields
 - arcs/rotations
- Treatment planning on external contours
- Broad margins

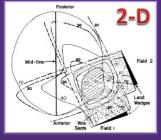
Patient Data Acquisition

- Various methods used to obtain external contours
 - Solder wire
 - Flexi-curves
 - Contour takers
 - Simulator films


IAEA Atlases, 1965-1972

- Atlas of radiation dose distributions:
 - Vol. I, Single-field isodose charts. Webster, Tsien, 1965
 - Vol. 2, Multiple field isodose charts. Cohen, Martin, 1966
 Vol 3, Moving field isodose
 - charts. Tsien, Cunningham, Wright, Jones, Pfalzner, 1967
 - Vol. 4, Brachytherapy isodose charts sealed radium sources. Stovall, Lanzl, Moos, 1972

Courtesy: JR Cunning


Manual Isodose Calculations

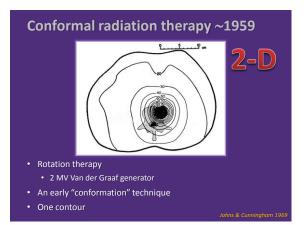
- 1960s & early 70s
- Isodose shift method
- All patients water-like

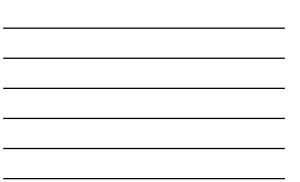
Photon energy (MV)	k (approximate)	
< 1	0.8	
⁶⁰ Co – 5	0.7	
5 – 15	0.6	
15 – 30	0.5	
30	0.4	

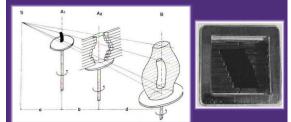
Conformal radiation therapy ~1960s

Cobalt-60 Wedge filters

- Wax seats for dose build-up
 Hand drawn isodose curves
- Patients made flat


Johns & Cunningham 19


Patient positioning ~1960s


- Dose delivery system for wedge fields of previous slide
- Plaster cast with wax seats
- Fields interlocked for size and wedge orientation
- Repositioning is precise

Johns & Cunningham 196

Conformal Therapy and MLC <u>Proposal</u> by Takahashi, 1965

Not implemented in clinical practice until >30 years later!

<u>1969</u>: Canadian Association of Physicists Annual Meeting

- Jack Cunningham
 - Chairman, Division of Medical and Biological Physics

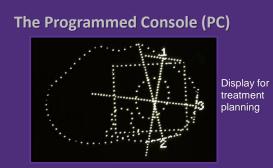
THE PROGRAMMED CONSOLE - A SMALL SPECIAL PURPOSE CONPUTER 'OF RADIO-THERAPY J.R.Cumningham, J.Milon, D.Brinkman and Barbara Caesar Ontario Cancer Institute, Toronto

EMPIRICAL REPRESENTATION OF BEAM

J.R. Cunningham Ontario Cancer Institute, Toronto

WORKSHOP ON C.MPUTER APPLICATIONS AND METHODS IN MEDICAL PHYSICS J.R.Cunninghan, R.W.Borsley, R.G. Baker, B.Mee, J.C.F.MacDonald and K.W. Taylor Ontario Cancer Institute, Toronto

First Computer for Radiation Therapy - 1967


Contour entry by a "rho-theta" tracing unit

First Computer for Radiation Therapy - 1967

- Programmed Console (PC)
- 12K of memory
- 12 bit word
- Note TV camera for enlarging display

JR Cunningham

Display of patient's contour & 3 beams arranged to treat target
Isodoses are shown within the "viewing window"

The Programmed Console (PC)

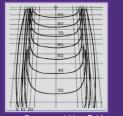
- Display for treatment planning
- Plotting was also available

1-D

2-D - 2.5-D

2.5 - 3-D

Display of isodose curves for a single beam


Algorithms

- Empirical
 - Measured data only stored on grid
 - Make corrections for
 - External contours, wedges, inhomogeneities ...
- Semi-empirical
 - TAR-SAR methods
 IRREG, CBEAM, MULBEAM, ...
 - EQTAR
- Model-based
- Convolution/superposition
- Monte Carlo

Matrix Representation

- Doses measured and pre-stored on grid
- For treatment planning, interpolate between points
- Make corrections for contour, wedges, inhomogeneities

X-Y Cartesian Grid

Scatter-Air Ratios

PHYS. MED. BIOL. 1972, OL. 17, NO. 1, 42-51

Scatter-Air Ratios

J. R. CUNNINGHAM, PH.D.

Physics Division, Ontario Cancer Institute, Toronto, Canada


Received (revised version) 26 April 1971

ABSTRACT. Scatter-sir ratios are empirical quantities derived from tissue-air ratios for use in calculating the dose from soattered radiation at a point in an irratiated phantom. List tissue-air ratios, for each radiation quality, they depend only on depth and beam cross-section but are independent of the distance from the source. Their use for calculations within uniform and non-uniform radiation beams is outlined and the extension to account for tissue-heterogeneities is discussed.

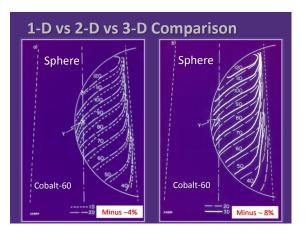
PROGRAM IRREG – CALCULATION OF DOSE FROM IRREGULARLY SHAPED RADIATION BEAMS

J.R. CUNNINGHAM, P.N. SHRIVASTAVA* and J.M. WILKINSON † Physics Division, Ontario Cancer Institute, Toronto, Canada


Primary plus scatter calculations

Radial sector integration (Clarkson)

mput Prog Biomed 2: 192-199; 197.

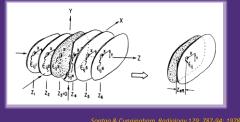

CBEAM Uses Cartesian Slabs

Beam intensity modulated in only one direction

Flat or symmetric contour

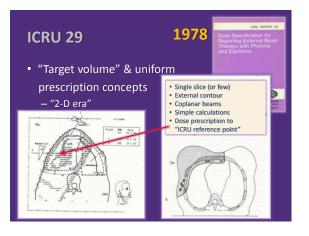
Cunningham's CBEAM

The Power of SARs

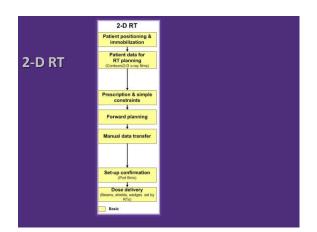

SAR Sector SAR dSAR d²SAR

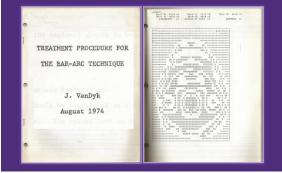
Scatter at depth from a beam Scatter from a pie-shaped 'slab' Scatter from a 'pencil' Scatter from a 'voxel'


Original EqTAR Method is considered as "2.5-D"


• For computational speed, adjacent slice data were collapsed to an effective scattering slice

Example of Symmetry Assumptions 2-D 3-D





Timesharing System, ~1972

Bar-Arc Technique – 1974

Conventional Bar-Arc

Major Technology for 2-D RT

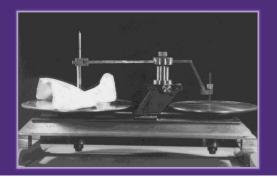
- Simple immobilization
- Simulator
 - Possibly access to CT (starting late 1970s)
- Treatment machine
 - Cobalt-60 or basic linear accelerator
 - Port films

-D RT

3-D CRT

Different forms of RT

2-D RT


B-D CRT

CRT

Methods of Producing Missing Tissue Compensators for High Energy Photon Beams

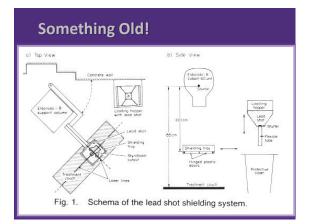
- Make patient flat
 - ... uniform dose ... for uniform H_2O density
 - Layers of lead
 - Semi-automatic compensator cutter (special purpose)
 - Milling styrofoam, low melting point alloy

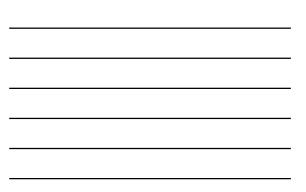

Mantle Compensator Construction

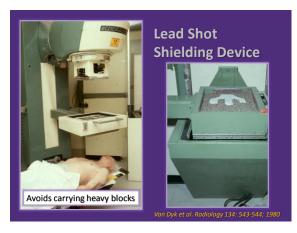
Mantle Compensator



Princess Margaret Hospital, Toronto Compensator Cutter, 1960s-1990s


Dose Profiles: Straight vs Tapered Blocks





Low Melting Point Alloy

AECL Theraplan, 1980 • CT-based treatment planning

Summary: "When the World Was Flat"

- 2-D era
 - Anatomy defined by
 - Flexible wires
 - Special contour takers
 - X-rays
 - Dose calculations
 - Predefined atlases
 - Manual isodose summations single planes
 - Simple beam shapes with wedges or compensators
 - Measurement based or semi-empirical calculations
 - Printed on alpha-numeric line printers or plotters

• Fortunately, we live in a world that has moved forward by several dimensions ...