Establishing a Managed Radiation Dose for any Pediatric Exam on any CT Scanner

Keith J. Strauss, MSc, FAAPM, FACR Clinical Imaging Physicist Cincinnati Children's Hospital University of Cincinnati College of Medicine

Introduction

- Adult hospitals perform 80% of pediatric CT exams.
- Pediatric radiation doses and image quality should be managed.
- Both tube voltage and mAs should be altered for pediatric imaging.
- Minimalist approach (change mAs only) is preferred over doing nothing.

The Challenge

- Ideally, unique scan parameters should be established for each individual patient accounting for:
 - Patient size
 - Type of CT examination
 - Design of actual CT scanner
- This can be done in academic centers with diligent effort.

The Challenge

- Is this a practical solution for a community hospital that performs an occasional pediatric CT scan?
- Yet, majority of pediatric CT imaging in the US OCCURS in non-dedicated pediatric hospitals

A Solution: Patient Specific Technique on any CT Scanner

- Establish Diagnostic Reference Levels (DRL) for an examination for a given size patient
- Compare SSDE after the projection scan to department's DRL
- Adjust the clinical technique to match the desired DRL
 - Manual mode
 - Automated tube current mode
 - Enlist the help of your qualified medical physicist (QMP)

- Adult Patient for Scanner #1
 - Use your measured dose data
 - Measured CTDI_{vol} data
 - Head
 - Body
 - Associated technique factors which created measured CTDI_{vol}

CT SCANNER DOSE INDICES

Measured CTDI_{vol}

- Measure CTDI_{vol} with identical scan parameters
 - kVp
 - mA
 - Rotation time
 - Bow Tie Filter
- Use phantom 10, 16, and 32 cm diameter

DISPLAYED CTDI SHORTCOMING

Same radiographic technique Displayed CTDI_{vel} based on 32 cm CTDI Phantom

CT SCANNER DOSE INDICES

Displayed CTDI_{vol}

 Standardized method to estimate and compare the radiation output of two different CT scanners to same phantom.

does not represent . . .

Patient dose!!

CLINICAL DILEMMA

- Displayed CTDI_{vol} on scanner is independent of patient size
 - 16 cm CTDI phantom: adult dose over while pediatric dose under estimated.
 - 32 cm CTDI phantom: adult and pediatric dose under estimated ~ 2.5 times!
 - Propagated by DICOM Structured Dose Reports and CT scanner dose reports.

- Adult Patient for Scanner #1
 - Do your measured CTDI_{vol} results agree with published (national DRLs)?
 - ACR Accreditation submitted values without iterative reconstruction
 - Routine head CTDI_{vol16} < 75 mGy
 - Routine body CTDI_{vol32} < 25 mGy
 - Discuss with your site's OMP

Establish Department DRLs

- Adult Patient for Scanner #1
 - Scale the mAs value if necessary to adjust CTDI_{vol} to desired level.
 - Calculate SSDE for routine abdomen
 - (28 & 38 cm AP & LAT dimensions)
 - DRL for Scanner #1

- Adult Patient DRL, Scanners #1, #2, #3, etc.
 - Scanner #1 (28 x 38 cm adult abdomen):
 - 120 kV, 250 mAs, pitch = 1, 25 mGy CTDI_{vol}
 - Site elects to reduce dose 20%
 - 120 kV, 200 mAs, pitch = 1, 20 mGy CTDI_{vol}
 - 120 kV, 250 mAs, pitch = 1.2, 20 mGy CTDI_{vol}
 - 20 mGy * 1.14 = 23 mGy SSDE

- Adult Patient DRL for Scanners #2, #3, etc.
 - Goal: similar image quality on all of site's CT scanners
 - First step: match the patient's radiation dose to the on all site's scanners.
 - Similar image quality is not guaranteed.
 - Evaluate image quality any time patient doses are altered
 - Cooperative task between radiologists, technologists, and QMP

Establish Department DRLs

- Adult Patient DRL, Scanners #1, #2, #3, etc.
 - 'Same' adult DRL for each scanner
 - SSDEs are equal
 - CTDI_{vol} values are equal
 - Unique technique for each scanner
 - mAs alone cannot be used to compare patient dose between two CT scanners

- Adult Patient DRL, Scanners #1, #2, #3, etc.
 - Scanner #1 (28 x 38 cm adult abdomen):
 - 120 kV, 200 mAs, pitch = 1, 20 mGy CTDI_{vol}
 - Scanner #2 (28 x 38 cm adult abdomen):
 - \cdot 120 kV, 250 mAs, pitch = 1, 13 mGy CTDI_{vol}
 - 120 kV, 385 mAs, pitch = 1, 20 mGy CTDI_{vol}
 - 120 kV, 250 mAs, pitch = 0.65, 20 mGy CTDI_{vol}
 - 23 mGy SSDE for both scanners

• Select Pediatric Patient DRL (without iterative reconstruction)

Abdomen/	Abdomen/	Abdomen/	kVp	mA	Time (sec)	Pitch During Measured CTDIvol	Pitch During Clinical Exam	Adult SSDE					
Pelvis:	Pelvis:	Pelvis:	120	200	1	1.0	1.0	23			Scanner #	1: 23 mGy	Adult SSDE
AP Thickness (cm)	LAT Thickness (cm)	Effective Diameter (cm)	Mass (kg)	Age	Limited mAs Reduction Factor	Moderate mAs Reduction Factor	Aggressive mAs Reduction Factor	Limited mAs SSDE (mGy)	Moderate mAs SSDE (mGy)	Aggres- sive mAs SSDE (mGy)	Limited NB = Adult SSDE Estimated mAs	Moderate NB = 0.75 * Adult SSDE Estimated mAs	Aggressive NB = 0.5 * Adult SSDE Estimated mAs
10	14	11.8	4	newborn	0.52	0.39	0.25	23	17	11	104	77	50
11	16	13.3	10	1 yr	0.55	0.42	0.29	23	18	12	110	84	59
14	20	16.7	18	5 vr	0.62	0.50	0.39	23	19	15	123	100	78
16	25	20.0	33	10 yr	0.70	0.62	0.53	23	20	18	140	123	106
19	29	23.5	54	15 yr	0.80	0.74	0.68	23	21	20	160	148	137
22	32	26.5	65	20 yr	0.89	0.86	0.83	23	22	22	179	172	165
25	35	29.6	75	md adult	1.00	1.00	1.00	23	23	23	200	200	200
31	41	35.7	110	lg adult	1.25	1.31	1.43	23	25	27	250	262	287

Establish Department DRLs

• AP & LAT thicknesses are average values from study of 360 random patients

Kielnman PL et al. AJR June 2010, pp. 1611 – 19.

Abdomen/	Abdomen/	Abdomen/	kVp	mA
Pelvis:	Pelvis:	Pelvis:	120	200
AP Thickness (cm)	LAT Thickness (cm)	Effective Diameter (cm)	Mass (kg)	Age
10	14	11.8	4	newborn
11	16	13.3	10	1 yr
14	20	16.7	18	5 vr
16	25	20.0	33	10 yr
19	29	23.5	54	15 yr
22	32	26.5	65	20 yr
25	35	29.6	75	md adult
31	41	35.7	110	la adult

AGE vs PATENT SIZE

Same age patients vary dramatically in size.

- Abdomens of:
 - Largest 3 year olds and smallest adults are
 the same size.
 Age-and Gender-Based Abdomen Size
- Patient cross section size, not age, should be used.

- AP & LAT thicknesses are average values from study of 360 random patients
- Kielnman PL et al. AJR June 2010, pp. 1611 19.
- Effective Diameter = (AP Thk <u>* LAT Thk</u>)^{0.5}
 - Boone JM et al. TG204, AAPM website
 - Average mass of boys &

		1.1	
- t-		-	

National Center for Health Statistics
2000

	Pelvis:	Pelvis:	Pelvis:	120	200
2	AP Thickness (cm)	LAT Thickness (cm)	Effective Diameter (cm)	Mass (kg)	Age
	10	14	11.8	4	newborn
	11	16	13.3	10	1 yr
48	14	20	16.7	18	5 yr
STICS	16	25	20.0	33	10 yr
	19	29	23.5	54	15 yr
	22	32	26.5	65	20 yr
	25	35	29.6	75	md adult
	31	41	35.7	110	lg adult

men/ kVn mA

Establish Department DRLs

Select Pediatric Patient DRL (without iterative reconstruction)

- A. Use adult techniques
- Newborn (10 x 14 cm) dose = 2.4 * adult dose
- Common practice prior to 2001
- **B. Limited reduced pediatric techniques**
 - Newborn SSDE = adult SSDE
 Basis of CT protocols on Image Gently Website posted in 2008

	mAs Reduction	mAs Reduction	mAs Reduction
Age	Factor	Factor	Factor
newborn	0.52	0.39	0.25
1 yr	0.55	0.42	0.29
5 yr	0.62	0.50	0.39
10 yr	0.70	0.62	0.53
15 yr	0.80	0.74	0.68
20 yr	0.89	0.86	0.83
md adult	1.00	1.00	1.00
lg adult	1.25	1.31	1.43

Establish Department DRLs

Select Pediatric Patient DRL (without iterative reconstruction)

D. Aggressive pediatric techniques

- Newborn SSDE = 0.5 * adult SSDE
- Results of <u>QuIRCC</u> publishe research

ed	Age	mAs Reduction Factor	mAs Reduction Factor	mAs Reduction Factor
	newborn	0.52	0.39	0.25
	1 yr	0.55	0.42	0.29
	5 yr	0.62	0.50	0.39
	10 yr	0.70	0.62	0.53
	15 yr	0.80	0.74	0.68
	20 yr	0.89	0.86	0.83
	md adult	1.00	1.00	1.00
	la adult	1 25	1 3 1	143

Select Pediatric Patient DRL (without iterative reconstruction)

- C. Moderate pediatric techniques
 - Newborn SSDE = 0.75 * adult SSDE
- D. Aggressive pediatric techniques
 - Newborn SSDE = 0.5 adult SSDE
 - Results of QuIRCC published
 research

	mAs Reduction	Moderate mAs Reduction	Aggressive mAs Reduction
Age	Factor	Pactor	Factor
newborn	0.52	0.39	0.25
1 yr	0.55	0.42	0.29
5 yr	0.62	0.50	0.39
10 yr	0.70	0.62	0.53
15 yr	0.80	0.74	0.68
20 yr	0.89	0.86	0.83
nd adult	1.00	1.00	1.00
la adult	1.25	1.31	1.43

Establish Department DRLs

D. QuIRCC published research?

- Six pediatric hospitals submitted CT patient CTDI_{vol} dose data from late 2009; prior to iterative reconstruction reductions
- Image quality was evaluated
- SSDE/SSDE_{adult} = 0.14 + 0.025*LAT size

= 0.14 + 0.025 + 14 = 0.49

Goske MJ, et al. Radiology (2013) 268(1), 208-18.

 NB dose is half of adult dose in Aggressive model

Establish Department DRLs

Pediatric Patient DRL (without iterative reconstruction) SSDE

Abdomen/ Pelvis:	Abdomen/ Pelvis:	Abdomen/ Petvis:	kVp	mA 200	Time (sec)	Pitch During Measured CTDIvol	Pitch During Clinical Exam	Adult SSDE		
AP Thickness (cm)	LAT Thickness (cm)	Effective Diameter (cm)	Mass (kg)	Age	Limited mAs Reduction Factor	Moderate mAs Reduction Factor	Aggressive mAs Reduction Factor	Limited mAs SSDE (mGy)	Moderate mAs SSDE (mGy)	Aggres- sive mAs SSDE (mGy)
10	14	11.8	4	newborn	0.52	0.39	0.25	23	17	11
11	16	13.3	10	1 yr	0.55	0.42	0.29	23	18	12
14	20	16.7	18	5 vr	0.62	0.50	0.39	23	19	15
16	25	20.0	33	10 yr	0.70	0.62	0.53	23	20	18
19	29	23.5	54	15 yr	0.80	0.74	0.68	23	21	20
22	32	26.5	65	20 yr	0.89	0.86	0.83	23	22	22
25	35	29.6	75	md adult	1.00	1.00	1.00	23	23	23
31	41	35.7	110	lo adult	1.25	1.31	1.43	23	25	27

 Pediatric <u>Abdominal</u> DRL (without iterative reconstruction) Required mAs

mA	Time (sec)	Pitch During Measured CTDIvol	Pitch During Clinical Exam	Adult SSDE								
200	1	1.0	1.0	23			Scanner #	1: 23 mGy	Adult SSDE	Scanner #2	2: 23 mGy	Adult SSDE
						Aggres-	NB =	NB = 0.75	Aggressive	NB =	Moderate NB = 0.75	Aggressive
	Limited	Moderate	Aggressive	Limited	Moderate	sive	Adult	* Adult	NB = 0.5 *	Adult	* Adult	NB = 0.5 *
	mAs	mAs	mAs	mAs	mAs	mAs	SSDE	SSDE	Adult SSDE	SSDE	SSDE	Adult SSDE
	Reduction	Reduction	Reduction	SSDE	SSDE	SSDE	Estimated	Estimated	Estimated	Estimated	Estimated	Estimated
Age	Factor	Factor	Factor	(mGy)	(mGy)	(mGy)	mAs	mAs	mAs	mAs	mAs	mAs
newborn	0.52	0.39	0.25	23	17	11	104	77	50	201	149	97
1 yr	0.55	0.42	0.29	23	18	12	110	84	59	212	162	113
5 yr	0.62	0.50	0.39	23	19	15	123	100	78	237	193	149
10 yr	0.70	0.62	0.53	23	20	18	140	123	106	270	237	204
15 yr	0.80	0.74	0.68	23	21	20	160	148	137	308	286	263
20 yr	0.89	0.86	0.83	23	22	22	179	172	165	344	331	318
md adult	1.00	1.00	1.00	23	23	23	200	200	200	385	385	385
lg adult	1.25	1.31	1.43	23	25	27	250	262	287	481	504	552

W	/ith de [·]	respect to reduction of mAs when veloping abdominal CT technique factors for a newborn patient:
17%	1.	Newborn (NB) dose = adult dose (AD) if adult mAs is unchanged.
23%	2.	NB dose = half of AD if adult mAs cut in half.
30%	3.	NB dose = AD if adult mAs divided by 3.
13%	4.	NB dose = half of AD if adult mAs divided by 4.
17%	5.	NB dose = half of AD does not provide

[%] <u>clinically useful images.</u>

With respect to reduction of mAs when developing abdominal CT technique factors for a newborn patient:

- 1. Newborn (NB) dose = adult dose (AD) if adult mAs is unchanged.
- 2. NB dose = half of AD if adult mAs cut in half.
- 3. NB dose = AD if adult mAs divided by 3.
- 4. NB dose = half of AD if adult mAs divided by 4.
- 5. NB dose = half of AD does not provide clinically useful images.

Goske MJ, et al. Radiology 2013 Jul;268(1):208-18. Strauss KJ. Pediatr Radiol Supplement 2014 (in press)

Pediatric <u>Chest</u> DRL (without iterative reconstruction) Required mAs

• BE CAREFUL:

- Data has not been published to date for the chest where pediatric radiologists have evaluated image quality an<u>d dose.</u>
- Consider using Moderate

as opposed to Aggressive

mAs reduction until more

data is published

	mAs	mAs	Aggressive mAs
	Reduction	Reduction	Reduction
Aye	Factor	Factor	Factor
ewborn	0.52	0.39	0.25
1 yr	0.55	0.42	0.29
5 yr	0.62	0.50	0.39
10 yr	0.70	0.62	0.53
15 yr	0.80	0.74	0.68
20 yr	0.89	0.86	0.83
d adult	1.00	1.00	1.00
tluber	1.25	1 31	1.43

- Pediatric Head Exams w/o iterative recon
 - Have validated adult head doses by ACR.
 - Limited: ped doses = adult dose (75 mGy max)

Head Baseline:	Head Baseline:	Head Baseline:	kVp	mA 370	Time (sec)	Pitch During Measured CTDIvol	Pitch During Clinical Exam 1.0	Scanner #1
AP Thickness (cm)	LAT Thickness (cm)	Effective Diameter (cm)	Mass (kg)	Age	<i>Limited</i> mAs Reduction Factor	Moderate mAs Reduction Factor	Limited Estimated mAs	Moderate Estimated mAs
14	12	13	4	newborn	0.74	0.38	274	141
16	13	14.5	10 4		0.80	0.47	296	174
17	14	15.5	13	2 yr	0.86	0.62	318	229
19	15	17	21	6 yr	0.93	0.79	344	292
20	16	18	75	md adult	1	1	370	370

- Pediatric Head Exams w/o iterative recon
- Have validated adult head doses by ACR.
- Limited: ped doses = adult dose (75 mGy max)
- Moderate: 16 vs 20 cm AP: 35 mGy vs 75 mGy
 - Maximum ACR reference values

						During	Pitch During	
						Measured	Clinical	Scanner
Head	Head	Head	kVp	mA	Time (sec)	CTDIvol	Exam	#1
Baseline:	Baseline:	Baseline:	120	370	1.00	1.0	1.0	
					Limited	Moderate		
AP	LAT	Effective			mAs	mAs	Limited	Moderate
Thickness	Thickness	Diameter	Mass		Reduction	Reduction	Estimated	Estimated
Thickness (cm)	Thickness (cm)	Diameter (cm)	Mass (kg)	Age	Reduction Factor	Reduction Factor	Estimated mAs	Estimated mAs
Thickness (cm) 14	Thickness (cm) 12	Diameter (cm) 13	Mass (kg) 4	Age newborn	Reduction Factor 0.74	Reduction Factor 0.38	Estimated mAs 274	Estimated mAs 141
Thickness (cm) 14 16	Thickness (cm) 12 13	Diameter (cm) 13 14.5	Mass (kg) 4 10	Age newborn	Reduction Factor 0.74 0.80	Reduction Factor 0.38 0.47	Estimated mAs 274 296	Estimated mAs 141 174
Thickness (cm) 14 16 17	Thickness (cm) 12 13 14	Diameter (cm) 13 14.5 15.5	Mass (kg) 4 10 13	Age newborn 1 yr 2 yr	Reduction Factor 0.74 0.80 0.86	Reduction Factor 0.38 0.47 0.62	Estimated mAs 274 296 318	Estimated mAs 141 174 229
Thickness (cm) 14 16 17 19	Thickness (cm) 12 13 14 15	Diameter (cm) 13 14.5 15.5 17	Mass (kg) 4 10 13 21	Age newborn 1 yr 2 yr 6 yr	Reduction Factor 0.74 0.80 0.86 0.93	Reduction Factor 0.38 0.47 0.62 0.79	Estimated mAs 274 296 318 344	Estimated mAs 141 174 229 292

With respect to managing pediatric head CT doses:

20%	1.	Calculate the SSDE to estimate patient dose.
20%	2.	Cut the adult head mAs in half, for 1 yr old technique to deliver ~ 35 mGy CTDI _{vol} .
20%	3.	Cut the adult head mAs in half, for 1 yr old technique to deliver ~ 75 mGy CTDI _{vol} .
13%	4.	35 mGy CTDI _{vol} is recommended by Image Gently for 1 yr old patient head.
27%	5.	35 mGy CTDI _{vol} is recommended by ACR for a newborn head.

With respect to managing pediatric head CT doses:

- 1. Calculate the SSDE to estimate patient dose.
- 2. Cut the adult head mAs in half, for 1 yr old technique to deliver ~ 35 mGy CTDI_{vol}.
- 3. Cut the adult head mAs in half, for 1 yr old technique to deliver ~ 75 mGy CTDI_{vol}.
- 4. 35 mGy CTDI_{vol} is recommended by Image Gently for 1 yr old patient head.
- 5. 35 mGy CTDI_{vol} is recommended by ACR for a newborn head.

Strauss KJ. Pediatr Radiol Supplement 2014 (in press)

Iterative Reconstruction Required mAs

- Scans with iterative reconstruction should deliver significantly less dose than DRL values of ACR
- Degree of iterative reconstruction
- Vendor recommendation?
- Site's radiologists and QMP should evaluate degree of iterative reconstruction that provides desired image quality.

Establish Department DRLs

Iterative Reconstruction Required mAs

- Scanner 1 (28 x 38 cm adult abdomen):
 - Scale adult patient mAs to reflect the reduction in adult patient SSDE
 - Plug technique and SSDE values into table.
 - Consider moderate as opposed to aggressive mAs reduction until more data is published

,	kVp	mA	Time (sec)	Pitch During Measured CTDIvol	Pitch During Clinical Exam	Adult SSDE	
	fill in	fill in	fill in	fill in	fill in	fill in	П

Establish Department DRLs

• Tube Voltage < 120 kV: Required mAs?</p>

- Any size patient: Less voltage, same dose
 - Set size dependent mAs at 120 kV
 - Note displayed CTDI_{vol120}
 - Reduce voltage to desired value on scanner
 - Increase mAs until CTDI_{vol} = CTDI_{vol120}
 - Increased Contrast at ~ same dose

,	kVp	mA	Time (sec)	Pitch During Measured CTDIvol	Pitch During Clinical Exam	Adult SSDE	
	fill in	fill in	fill in	fill in	fill in	fill in	

- Voltage < 120 kV: Required mAs?
- 10 yr patient: Less voltage, same image quality
- Set size dependent mAs at 120 kV
- Note displayed CTDI_{vol120}
- Measure increased contrast at kV_{ref} compared to 120 kV.
- Place 'roi' over 1 cm disk
 & background region

Establish Department DRLs

- Voltage < 120 kV: Required mAs?
- 10 yr patient: Less voltage, same image quality
 - Noise increase: CTDI_{vol120} vs CTDI_{vol80}
 - Assume contrast up 20% / Noise up 40%
 - Increase mAs at 80 kV until Noise increases only 20%
 - · CNR_{120kV} = CNR_{80kV}
 - Same image quality; Reduced patient dose

Establish Department DRLs

Previous analysis: Reduced mAs @ 120 kV
• Voltage < 120 kV: Required mAs?

- 120 vs 100, 90, 80, & 70 kV
- Affect on:
 - Contrast
 - Noise
 - Artifacts
 - Scanning speed: Motion Unsharpness

When reducing the high voltage of the CT scanner in an effort to improve image quality and reduce the radiation dose to pediatric patients one can ignore the effect on:

13%	1. Contrast.
23%	2. Noise.
23%	3. Sharpness
17%	4. Artifacts
23%	5. Scanning speed

When reducing the high voltage of the CT scanner in an effort to improve image quality and reduce the radiation dose to pediatric patients, for each type of clinical examination one can ignore the effect on:

- 1. Contrast.
- 2. Noise.
- 3. Sharpness.
- 4. Artifacts.
- **5. Scanning Speed**
- Ref: Yu L, Bruesewitz MR, Thomas KB, Fletcher JG, Kofler JM, McCollough CH. Radiographics 2011 May-Jun;31(3):835-48, p 835.

Scan Progression

- Complete projection Scan
- Setup voltage and mAs as previously determined to achieve department DRLs

or

- Calculate SSDE
- Compare calculated SSDE to reference SSDE
- Adjust mAs or kV as necessary

Conclusions

Due to variations in: •Patient size,

•Type of CT examinations, and

•Design of actual CT scanners,

Patient's CT dose should be appropriately

•Estimated and •Managed during the examination, regardless of patient size!