Automated CT Protocol Design

Advantages and Pitfalls of Algorithm-Based Technique Selection in Pediatrics

> Robert MacDougall, M.Sc. Department of Radiology Boston Children's Hospital

Boston Children's Hospital

HARVARD MEDICAL SCHOOL TEACHING HOSPITAL

Learning Objectives

- 1. Justification and Basics of Automatic Exposure Control (AEC)
- 2. Review of Two Commercial Products
- 3. Building Pediatric Protocols with AEC
- 4. The Boston Children's Hospital Experience

Boston Children's Hospital Until every child is well

Learning Objectives

- 1. Justification and Basics of Automatic Exposure Control (AEC)
- 2. Review of Two Commercial Products
- 3. Building Pediatric Protocols with AEC
- 4. The Boston Children's Hospital Experience

HARVARD MEDICAL SCHOOL TEACHING HOSPITAL

Boston Children's Hospital

Learning Objectives

- 1. Justification and Basics of Automatic Tube Current Modulation (AEC)
- 2. Review of Two Commercial Products
- 3. Building Pediatric Protocols with AEC
- 4. The Boston Children's Hospital Experience

Boston Children's Hospital Until every child is well HARVARD MEDICAL SCHOO TEACHING HOSPITAL

Learning Objectives

- 2. Review of Two Commercial Products
 - a) GE Auto mA

Boston Children's Hospital

b) Siemens CareDose 4D and Care kV

HARVARD MEDICAL SCHOOL

2a. GE Auto mA

Boston Children's Hospital

 Noise Index: Image Noise (SD) in uniform water phantom with same attenuation (D_w) as patient*

• Noise Tolerance is size dependent !

2a. GE Auto mA:GE FeatherLight Protocols							
	Weight	Noise Index	Minimum mA	Maximum mA	kV		
Routine/	0-20 lbs = 0-9 kg	5	65	130	80	Dink	
initial	21-60 lbs = 9.1-27.2 kg	7	80	160	100	PIIK	
procedures	61-100 lbs = 27.3-45.4 kg	10	95	190	120	Zone	
	101-200 lbs = 45.5-90.7kg	12	110	220	120		
	>200 lbs = >90.8 kg	15	125	300	120		
nttp://www.geneartnc	RxNoise	Index _{sin} = RxNo	$iseIndex_{disk} \times \sqrt{\frac{Viewi}{First}}$	ngSliceThickness RxSliceThickness			
FirstBestler/Bichers							

2b. Siemens CareDose 4D:

Ref. kV and Quality ref. mAs:

Define desired noise level for standard adult patient (70 – 80 kg, $D_W \sim 33$ cm)

2b. Siemens CareDose 4D: Dose Saving Optimizer:

Selects level of subject contrast in order to optimize kVp according to image quality metric

Semi Mode: Set kVp, Effective mAs optimized based on Dose Optimizer Boston Children's Hospital

HARVARD MEDICAL SCHOO TEACHING HOSPITAL

CareDose "Strength":

Determines mA-Modulation Strength for large and small patients

2b. Siemens CareDose 4D:

- Image Quality Metrics defined for REFERENCE PATIENT
- i.e. We are dependent on CareDose 4D algorithm to optimize IQ/Dose for all patient sizes
- Still need size based protocols if we want to customize IQ/Dose curve

Boston Children's Hospital

HARVARD MEDICAL SCHOOL TEACHING HOSPITAL

_earning Objectives

- 1. Justification and Basics of Automatic Tube Current Modulation (AEC)
- 2. Review of Two Commercial Products
- 3. Building Pediatric Protocols with AEC
- 4. The Boston Children's Hospital Experience

Boston Children's Hospital

3a.	Buil GE	din Au	ig Pe to m	ediatric A	Protoco	ols with	
 1.4 Representation (Section 10) 1.2 (Section 10) 1.3 (Section 10) 1.4 (Section 10) 1.5 (Sec	Equilion = 0.14 = 0.00076W	BW (cet	-3	- Regressed - 1.2 99 20000000 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0			
Distribution	of SSDE						
BW Group	No. of Scans	Mean	Standard Error	Lower DRR, 25th Percentile	Median, 50th Percentile	Upper DRR, 75th Percentile	SSEE/SSDE _{and} Ratio
<15 cm	21	8.6	0.9	5.8	8.0	12.0	0.52
15-19 cm	153	10.0	0.5	7.3	8.7	12.2	0.61
2024 cm	286	11.4	0.7	7.6	9.8	13.4	0.69
25-29 cm	326	13.5	0.3	9.8	13.0	16.4	0.82
>30 cm	168	16.5	0.4	13.1	15.6	19.0	1.00
Soske MJ, Strau Radiology 2013 I	ss KJ, Coombs Mar 19 n Children's	LP, Ma Hospi	ndel KE, Towt	vin AJ, Larson DB, et al.	Diagnostic Reference	Ranges for Pediatric A	HARVARD MEDICAL SCHO

_		

	Building F	Pediati	ric Prc	tocols	with <i>i</i>	AEC
	Age (years)	AP (cm)	LAT (cm)	Dw (cm)	kVp	NI
	NB	8.9	10.4	9.6	80	5.5
	1	11.3	13.8	12.5	80	5.6
	5	13.8	17.9	15.7	80	6.1
	10	15.8	20.4	17.9	100	6.1
	15	18.3	23.8	20.9	100	6.1
	SA	21.8	29.8	25.5	100	10.1
	MA	24.7	32.3	28.2	120	12.7
	LA	30.7	38.4	34.3	120	20.7
Bostor Until eve	n Children's Hospital ry child is well				W	HARVARD MEDICAL SCHOO TEACHING HOSPITAL

3. Building Pediatric Protocols with AEC

- GE Auto mA: Straight-forward to customize Dose Curve with size based protocols by modifying Noise Index
- kVp is fixed based on patient size and tube mA limits

Boston Children's Hospital

3c. Modeling CareDose 4D

The effect of following parameters on SSDE and CNR were modeled:

- 1. Patient Size
- 2. CareDose Strength
- 3. Quality Reference mAs
- 4. Dose Saving Optimizer Position
- 5. Semi Mode

80 kVp 100 kVp 120 kVp

Boston Children's Hospital Until every child is well

HARVARD M TEACHING F	EDICAL OSPITA	SCHO

3c. Modeling CareDose 4D

- CD4D Strength affects kVp selection.
- Effect of Dose Optimizer is a fixed ratio across all patient size when same kV is used e.g. S7/S3 = 1.22
- Effect of QRM is fixed across all patient sizes e.g. 200/150 = 1.33

```
Boston Children's Hospital
```


3c. Modeling CareDose 4D

- CD4D Strength affects kVp selection.
- Effect of Dose Optimizer is a fixed ratio across all patient size when same kV is used e.g. S7/S3 = 1.22
- Effect of QRM is fixed across all patient sizes e.g. 200/150 = 1.33
- · Semi Mode has no effect on curve shape

Boston Children's Hospital Until every child is well

38	a. Base	ed on	Diag	nosti	c Re	feren	ce Ra	anges
	Age (years)	AP (cm)	LAT (cm)	Dw (cm)	kVp	CD4D Strength	Dose Optimzer	QRM
	NB	8.9	10.4	9.6	80	Weak	7	150
	1	11.3	13.8	12.5	80	Weak	7	150
	5	13.8	17.9	15.7	100	Weak	7	175
	10	15.8	20.4	17.9	100	Weak	7	175
	15	18.3	23.8	20.9	100	Weak	7	175
	SA	21.8	29.8	25.5	120	Weak	7	175
	MA	24.7	32.3	28.2	120	Weak	7	175
	LA	30.7	38.4	34.3	120	Weak	7	135
Boston Children's Hospital Well HARVARD MEDICAL SCHOU							ARD MEDICAL SCHOOL IING HOSPITAL	

Learning Objectives

- 1. Justification and Basics of Automatic Tube Current Modulation (ATCM)
- 2. Review of Two Commercial Products
- 3. Building Pediatric Protocols with ATCM
- 4. The Boston Children's Hospital Experience

Boston Children's Hospital

4. The BCH Experience

-Size based AEC Techniques operated with Fixed kV (Semi Mode with CD4D)

-Patient Size measured on PA localizer

-Size-Based Protocol Selected

-Three Image Quality "Classes"

Boston Children's Hospital

HARVARD MEDICAL SCHOO TEACHING HOSPITAL

	Th estim	e following is the most reliable nate patient attenuation and s size-based CT protoco	e metric to election of a l:
23%	1.	Patient Weight (kg)	
13%	2.	Patient Age (years)	
23%	3.	Body Mass Index (BMI)	
23%	4.	Patient Girth (Calipers or	e-Calipers
17%	5.	Technologist best guess	
Bos	ton Childre every child is t	en's Hospital Nell	HARVARD MEDICAL SCHOOL TEACHING HOSPITAL

4. Patient Girth Measured with Calipers or e-Calipers

3c. Advantages of AEC protocols

- Adapts to changing anatomy (Lung/Pelvis)
- Adapts to patient geometry (AP/LAT)
- CareDose 4D: Less Risk of Error adapting to patient size (-10% to + 15 %)

Boston Children's Hospital Until every child is well

3c. Disadvantages of AEC protocols (1)

- Takes *extensive* testing to optimize protocols
- Without phantoms, process is iterative and time consuming
- Dependent on localizer position

Boston Children's Hospital

