Radiation Dose Reduction Strategies in CT, Fluoroscopy, and Radiography: Part 3. Radiography

Eric L. Gingold Department of Radiology Thomas Jefferson University Hospita

Radiation dose optimization

Figure of Merit:

• $FOM = \frac{SNR^2}{dose}$

Minimum dose needed to achieve a target SNR
 Maximum SNR possible for a given dose
 ALARA → minimize the dose to achieve a target SNR

💂 Jefferson.

How to measure dose in radiography

- Entrance skin dose
- Calculated from exposure factors and radiation output data
- Dose (kerma) area project (DAP or KAP)
- Calculated or measured
- Often reported by radiography unit

Lefferson.

How to establish target SNR

- Work with radiologists to determine the **<u>El</u>** that achieves:
- Acceptable image quality (low contrast detectability and noise) For each body part/view
- For the image receptor in use
- Enter those El values into the CR/DR acquisition computer(s) as the Target EI (EI_T)

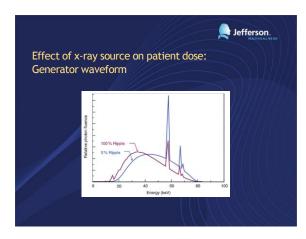
Jefferson.

IEC Standard Exposure Indicators for Digital Radiography

• Exposure Index, El

- EI = K_{cal} x 100 μGy⁻¹ (unitless)
 Proportional to Air-kerma (exposure) at the receptor

Deviation Index, DI


- DI = 10 x log₁₀ (EI/EI_T)
- How close did we come to the target?

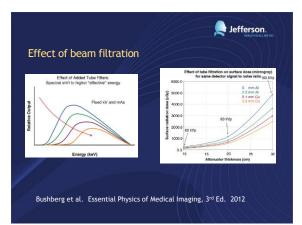
💂 Jefferson.

Once target Els are established to achieve the target SNR, you can work on minimizing

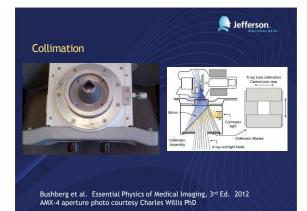
Minimizing dose in General Radiography: Factors to consider

- X-ray sourceBeam filtration
- Collimation
- Patient positioning and instruction
- Scatter control
- Image Receptor
- Automatic Exposure Control
- Image post-processing
- Exposure management • Repeat/Reject Analysis

💂 Jefferson.


X-ray generator / exposure control

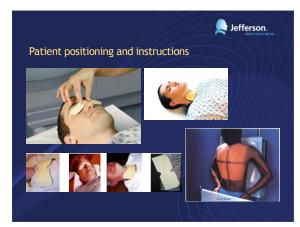
- Verify:
 - kVp accuracy
 - Exposure reproducibility
 - Timer accuracy
 - mA linearity
 - mAs linearity
- Experiment with higher kVps


Effect of beam filtration

- For 9 common radiographic projections, increasing total filtration to from 1.5 to 4.0 mm Al while holding kVp and exit dose fixed, avg effective and skin entrance doses were reduced by 17% and 38%, respectively.
- Adding 1 1.5 mm Al filtration beyond the 2.5 mm regulatory minimum does not pose problems for tube loading or image quality (based on screen-film image receptor).

Behrman, Yasuda. Effective dose in diagnostic radiology as a function of xray beam filtration for a constant exit dose and constant film density. Med Phys 25, 780 (1998).

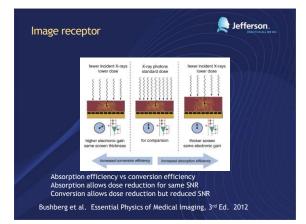
Collimation

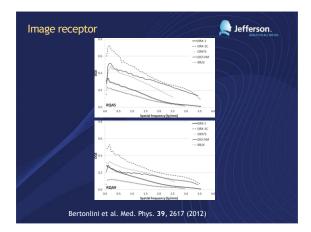

- Use the smallest practical field of view
 - Reduces the patient's integral dose (total energy imparted) Reflected in DAP/KAP
 - Reduces scatter / improves CNR
- Ensure that light field = radiation field (≤2% of SID)
- Caveats
 - Beware of "cutting off" anatomy
 - May require a repeat \rightarrow more exposure
 - Beware of "cutting off" an AEC sensor
 - May inadvertently increase the central ray exposure

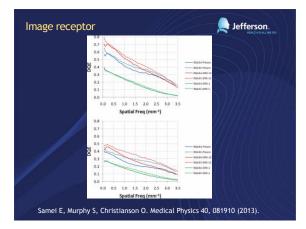
💂 Jefferson.

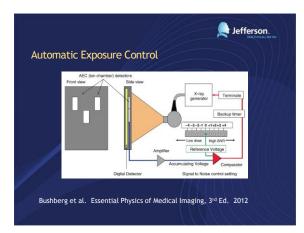
Patient positioning and instructions

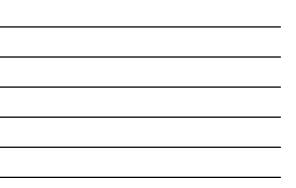
- Use maximum practical source-image distance (SID)
 Align image receptor to radiation field
 Maximize source-skin distance (SSD)

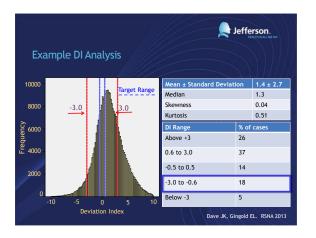

- Use the highest practical kVp Use contact/shadow shields
 - se contact/snadow snields Protect radiosensitive organs in or near the primary beam Thyroid Breasts Bone marrow Lens Conads
- Verbal communication
 Hold still
 Hold breath


💂 Jefferson. Scatter control Grid selection High Grid Ratio • Better scatter cleanup (Contrast Improvement Factor) • Higher dose (Bucky factor) • High grid frequency May be necessary to avoid aliasing (Moire interference patterns) Higher l/cm gives means thinner (lower CIF) at a given grid ratio • Grid usage Proper alignment Dilemma of 40"-72" focal length grid Use lower ratio grid when SID can vary









DI change of 1 corresponds to	1 mAs	"station" HARMERED
(Renard Series; ISO R'10)		

DI value	Change in exposure
3	x2
2	x1.6
1	x1.3
0	1
-1	x0.8
-2	x0.6
-3	x0.5

_

EI/DI analysis should be performed regularly and results reviewed with staff to ensure that dose optimization goals are being achieved.

Lefferson. Repeated/Rejected Images Unnecessary radiation exposure to patient Inefficiency in imaging operation Unproductive use of time and resources

But ...

• An inherent and unavoidable part of radiography

Jefferson.

Need for reject analysis in CR/DR

- Because of the ease of repeating an exposure, the repeat rate may be higher for digital than screen/film
- Without physical evidence, not conducting a reject analysis may allow a quality problem to go undetected
- ightarrow The need for reject analysis is greater than ever

lefferson.

Reports of digital repeat/reject analysis

Reason for rejection	Number of rejects	Percentage of rejects
Positioning	4,639	77.3
Exposure Error	588	9.8
None	571	9.5
Artifact	100	1.7
Testimages	54	0.9
Patient ID	50	0.8
Totals	6,002	100

ones et al, Journal of Digital Imaging, Vol 24, No 2 (April), 2011: pp 243-25

Targets and investigation levels

- CRCPD "QA Collectible" (Oct 2009)
 Recommend <10%
- AAPM TG 151 (2014?) recommendations
- 8% = overall target reject rate
- + 10% = upper threshold for investigation & possible corrective action
- Pediatric: 5% target, 7% threshold for investigation
- 5% = overall lower threshold
 - Low reject rate may reflect acceptance of poor quality images, poor compliance with minimum quality standards

💂 Jefferson.

Conclusion: Take-home points

- Use the highest DQE image receptor that you can afford
- Establish Target Exposure Index (EI_T) values carefully
- Calibrate AEC to achieve Target EI
- Use the correct grid
- Review El statistics regularly, and re-educate staff
- Analyze Repeat/Reject statistics regularly, and review with staff
- Compare measured entrance doses with reference levels

Which image receptor characteristic will reduce radiation exposure in digital radiography?

23%	1.	A photoconductive x-ray converter
10%	2.	Higher electronic gain
23%	3.	Higher absorption efficiency
23%	4.	Less electronic noise
20%	5.	An integrated anti-scatter grid

According to the forthcoming AAPM TG 151 report, a reasonable target repeat rate for digital radiography is:

20%	1.	3%	
17%	2.	5%	
17%	3.	8%	
13%	4.	10%	
33%	5.	12%	

Which parameter must be proactively configured in CR/DR workstations in order for DI to behave as intended?

17%	1.	K _{cal}	
27%	2.	EI	
17%	3.	DI	
13%	4.	ΕI _T	
27%	5.	log ₁₀	

💂 Jefferson.

SAM questions: Correct answers and references

• #1:

• 3 Higher Absorption Efficiency

- Ref: Bushberg et al. Essential Physics of Medical Imaging, 3rd
 Ed. 2012
- #2:

• 3 8%

- AAPM Report #151 (2014)
- #3:

• 4 El-

• AAPM Report #116 (2009)