Principles of PET/CT Quality Control and Calibration

S. Cheenu Kappadath, PhD, DABR, DABSNM

Department of Imaging Physics The University of Texas MD Anderson Cancer Center, Houston, Texas

skappadath@mdanderson.org

THE UNIVERSITY OF TEXAS MDAnderson Cancer Center Making Cancer History'

Educational Objectives

- Review principles of PET and PET/CT imaging
- Overview of PET performance testing
 NEMA NU-2 2001/2007 and ACR
- PET/CT Image Quality and Artifacts
- Recent advances in PET/CT

S. Cheenu Kappadath, PhD

AAPM 2014 2

Principles of PET Imaging

- Positron decay physics
- PET detectors design
- PET Lines-of-Response and Sinograms
- PET event types
 - prompt, true, scatter, random
- PET data processing
- normalization, attenuation, scatter, randoms
- PET/CT
- PET calibration and SUV
- PET 2D/3D acquisitions

S. Cheenu Kappadath, PhD

Positron Decay

 Nuclei with low a neutron-to-proton ratio converts a proton to a neutron via emission of positron (β⁺)

 $p = n + \beta^{+} + \upsilon; {}^{A}X_{z} = {}^{A}Y_{z-1} + \beta^{+} + \upsilon$ • Cyclotron (generator) for production of β^{+} emitters

- $$\label{eq:14} \begin{split} & {}^{14}N(p,\alpha)^{11}C \quad {}^{16}O(p,\alpha)^{13}N \quad {}^{13}C(p,n)^{13}N \quad {}^{14}N(d,n)^{15}O \\ & {}^{15}N(p,n)^{15}O \quad {}^{16}O(p,pn)^{15}O \quad {}^{18}O(p,n)^{18}F \quad {}^{20}Ne(d,\alpha)^{18}F \end{split}$$
- Electron capture competes with positron decay

$^{A}X_{Z} = ^{A}Y_{Z-1} + X-rays$	¹⁸ O(p,n) ¹⁸ F	
 Branching Ratios 	$\sqrt{\frac{18}{9}F_{(109,77m)}}$	
- ¹⁸ F = 0.967	$\frac{18}{8}O_{\text{(suble)}} \qquad $	
	ρ=0.967	
S. Cheenu Kappadath, PhD	Reproduced From MIRD: Radionuclide Data and Decay Schemes	AAPM

4

Annihilation Photons

- Energy spectrum of β^+ emission is continuous
- β⁺ range depends on energy
 - ¹⁸F: E_{max} = 0.64 MeV, Range ~1 mm
 - ⁸²Ru: E_{max} = 3.15 MeV, Range ~2 mm
- β^+ annihilation results in simultaneous emission of
 - Two 511 keV photons
 - Emitted (nearly) 180 degrees apart
 γ: 511 keV

PET detectors

Scintillator	Relative light output [NaI(Tl)=100]	Decay time (ns)	Thickness for 90% efficiency at 511 keV (cm)
BGO	15	300	2.4
GSO	25	60	3.3
LSO, LYSO	80	40	2.7
T Detector	Block	judat. ightguide	BGO Meeks
heenu Kappadath, Pl	hD		AAPM 201

PET Detector Module and Rings

PET Scanner – Covers Off

S. Cheenu Kappadath, PhD

New PET Detector Concepts

PET Signal Processing – Singles

- Detector block/module (scintillator/PMT) converts gamma ray energy to voltage pulse
- PHA: Event trigger and energy thresholds to select 511 keV (450-650 keV)
- Location of event in crystal block/module (Anger logic) and event time

Record the Line-of-Response

- Fundamental prerequisite to PET imaging
 - Photon (Singles) detection and processing
 - Coincidence assessment of singles events
 - Data storage and processing

LOR to Sinograms

PET Coincident Events – Prompts

PET data corrections

Randoms Correction

- 1) Randoms Rates from Singles Rates, R = $2\tau x S1 x S2$
 - Randoms are proportional to S²
 - Statistically more accurate since S>>R
- 2) Randoms Rates from Delayed Prompts (Δt >> 10 ns)
 - Real-time subtraction
 - Identical deadtime characteristics to Prompts channel
 - Requires more memory and statistically less accurate

Normalization (uniformity correction)

Deadtime Correction (Siemens mCT)

AAPM 2014 19

Geometry Correction

- Ring detector introduces non-uniform sampling of LOR away from isocenter
- Geometry correction maintains uniform pixel size in transverse plane
 2R_p

S. Cheenu Kappadath, PhD

AAPM 2014 20

Scatter mis-positions LOR in Sinograms

Model-based Scatter Estimation

Assume an annihilation at point P,

- Compute probability the photons originate along AC
- Compute the probability that the one of the photon is detected at A
 Compute the probability of second photon scattering at location S
 Compute the fraction of events scattered toward B (Klein-Nishina formula)
- The probability that the scattered photon is detected at B

Input: PET emission image, CT transmission image, LOR AB Output: Scatter along LOR AB

AAPM 2014 22

PET Signal Attenuation

Attenuation of PET coincident events depends on total object thickness only - it is independent of source location

Nuclear Medicine: Diagnosis and therapy Harbert, Eckelman, & Neumann

AAPM 2014 23

24

CT-based Attenuation Correction

- Photon energies different between CT and SPECT
- K≈1 for Compton Scatter dominates low Z at ECT (low HU)
- K≠1 for Photoelectric pertinent for high Z at ECT (high HU)
- HU-to-µ transform is piece-wise linear (bi-modal)

LaCroix et al., IEEE TNS 41, 1994 Kinahan et al, Med Phys 25, 1998

2/g) 0.2 0.1 Energy (keV) 0.200 0.150 0.100 0.050 0.000 1000 -500 500

PET/CT w/ and w/o AC

S. Cheenu Kappadath, PhD

Image Courtesy: Osama Mawlawi AAPM 2014 25

Role of CT in PET/CT

PET Scanner Calibration

- Perform PET scan with low known activity
 - Low scatter and deadtime conditions
 - Uniform cylinder simple attenuation correction
- Convert PET true count rate (cps) into activity concentration (Bq/mL)

PET Calibration Phantoms

2D versus 3D PET

PET Sensitivity NEMA (GE DRX)

S. Cheenu Kappadath, PhD

2D versus 3D PET

- 2D PET: Collimation septa present between detector planes in axial direction
- Reduces scatter; Uniform AX sensitivity (1 cm bed overlap)
- 3D PET: No collimation present except at end of ring
 - Sensitivity $3D > 2D \rightarrow$ lower activity needed
 - Randoms & Scatter 3D > 2D; Improvements in modeling of the random and scatter events \rightarrow Standard Acq. mode
 - Triangular AX sensitivity profile (~50% detector overlap)

PET data corrections

SAM Question 1

The attenuation of PET coincident events emitted from the patient depends on the:

38% A. Patient diameter or size 33% B. Location of annihilation event in the patient C. Radiopharmaceutical administered 19% 10% D. CT scan technique

SAM Question 1: Answer

- The attenuation of PET coincident events emitted from the patient depends on the:
 - A. Patient diameter or size
 - B. Location of annihilation event in the patient
 - C. Radiopharmaceutical administered
 - D. CT scan technique

Answer: A – Patient diameter or size

 Reference: SR Cherry, JA Sorenson, ME Phelps, "Physics in Nuclear Medicine, 3rd Edition," Saunders Elsevier, 2003

S. Cheenu Kappadath, PhD

AAPM 2014 34

SAM Question 2

The well counter calibration for a PET scanner is used to:

15% A. Correct for variations in image uniformity

23% B. Correct for variations in detector gains

15% C. Correct for differences in detector coincidence timing

8% D. Convert count rate (cps) to activity concentration (kBq/mL)

S. Cheenu Kappadath, PhD

AAPM 2014 35

SAM Question 2: Answer

- The well counter calibration for a PET scanner is used to:
 - A. Correct for variations in image uniformity
 - B. Correct for variations in detector gains
 - C. Correct for differences in detector coincidence timing
 - D. Convert count rate (cps) to activity concentration (kBq/mL)
- Answer: D Convert count rate (cps) to activity concentration (kBq/mL)
- Reference: SR Meikle, RD Badawi, "Quantitative Techniques in PET," in Positron Emission Tomography, eds. DL Bailey, DW Townsend, PE Valk, and MN Maisey, Springer-Verlag (Landon), 2005

S. Cheenu Kappadath, PhD

PET NEMA NU2-01/07 (2D/3D)

NEMA Tests

- Spatial Resolution
- Sensitivity
- Scatter Fraction/Count
- Rate Performance
- Image Quality
- Accuracy of correction for count losses and randoms

Daube-Witherspoon M. et al JNM, 43(10) 1398-1409, 2002

S. Cheenu Kappadath, PhD

AAPM 2014 37

NU2-01/07 Spatial Resolution Setup

- Point Sources are located at (0,1), (0,10), (10,0) cm
- 6 mCi/cc, Capillary tube sources ~ 1 μL active volume
- Reconstruct FBP, 256x256 matrix, 25 cm FOV, apply all correction but no filtration

S. Cheenu Kappadath, PhD

AAPM 2014 38

NU2-01/07 Spatial Resolution

S. Cheenu Kappadath, PhD

NU2-07 Spatial Resolution

	NEMA 2007 Resoluti Image Size: Scanner Mo Date Processed: Tue A	256 x 256 del 1103 ug 27 14:06:57	7 2013	
	Average Net Trues : Corrections Applied :	2874152.4 normalization deadtime radial-arc-co decay-correct frame-length- fore randoms-subtr	counts orrection tion -correction raction	
Met	hod of Reconstruction : Image Size :	FORE+FBP 256 x 256 x 8	81	
	XY Filter : Z Filter :	0.0 mm 0.0 mm		
adial Distance (cm)	Image zoom : XY Filter : Z Filter : Direction	FWHM (mm)	FWTM (mm)	
Radial Distance (cm)	Image zoom : XY Filter : Z Filter : Direction	0.0 mm 0.0 mm FwHM (mm) 4.75	FWTM (mm) 9.44	
tadial Distance (cm) 1 1	Image Zoom : XY Filter : Z Filter : Direction Transverse Axial	EWHM (mm) 4.75 4.06	FWTM (mm) 9.44 8.07	
adial pistance (cm) 1 1	Inage 200m : NY Filter : 2 Filter : Direction Transverse Axial Transverse Radial	6.0 mm 0.0 mm Finned (mm) 4.75 4.06 5.66	FWTM (mm) 9.44 8.07 10.55	
adial pistance (cm) 1 1 10 10	Inage 2008 NY Filter : Direction Transverse Axial Transverse Radial Transverse Tangential	0.0 m 0.0 m (m) 4.75 4.06 5.66 5.53	FWTM (mm) 9.44 8.07 10.55 11.26	

NU2-01/07 Sensitivity Setup

- Detected coincidence count rate per unit activity in FOV
- 250 μ Ci in ~70 cm 2.4 mL line source \rightarrow 5 Aluminum Sleeves
- Sensitivity measured with increasing amounts of attenuating material and extrapolated to no attenuation

AAPM 2014 41

NU2-01/07 Sensitivity: 2D @ R=0

NU2-07 Sensitivity: 3D @ R=0

NU2-01/07 SF & CR Performance Setup

- SF measures the sensitivity of scanner to coincidence events caused by scatter
- CR measures the performance of the PET scanner across a range of radioactivity levels
- ~40 mCi (3D) in 70 cm 4.8 cc line source
 - Dynamic data acq. as 4x15min and 14x25min with 25 min delays
 - Total time is ~13 hr
 - Analysis performed on sinograms with no corrections applied

S. Cheenu Kappadath, PhD

AAPM 2014 44

NU2-07 SF & CR Performance: 3D

Peak NEC Rate: >100 kcps @ =< 30 kBq/mL</p>

S. Cheenu Kappadath, PhD

Deadtime Correction Accuracy

S. Cheenu Kappadath, PhD

AAPM 2014 46

NU2-01/07 Image Quality Setup

- IEC Phantom: ~0.2µCi/mL background; ~0.8µCi/mL sphere
- ~5 mCi in the scatter phantom
- Clinical protocol used for data acquisition and reconstruction
- Draw ROIs on spheres and background regions

S. Cheenu Kappadath, PhD

AAPM 2014 47

NU2-01/07 Image Quality

Hot Sphere Contrast (%): 27 53 63 82 Cold Sphere Contrast (%): 66 73 Bodground Vorbbility (%): 7 6 5 5 4 3 Average residual lung error (%): 21 21 23 23 23	apriere didmeter (cm).			4.0	
Cold Sphere Contrant (%): 66 73 Bockground Vorbolity (%): 7 6 5 4 3 Average residual lung error (%): 21 21 Results generated from imageset with FET AC	Hot Sphere Contrast (%):				
Boolground Variability (5): 7 6 5 5 4 3 Average residual lung error (10): 21 Results generated from imageset with PET AC	Cold Sphere Contrast (%):				
Average residual lung error (5): 21	Background Variability (%):				
Results generoted from imageset with PET AC	Average residual lung error (π) :				
	Results generated from imageset w	(th PET AC			

S. Cheenu Kappadath, PhD

PET ACR Image Quality

- Specific instructions for phantom preparations
- Clinical protocol used for data acquisition and reconstruction
- Draw ROIs on cylinders and background regions

AAPM 2014 49

8

PET ACR Phantom Images

2

- 1. Image contrast and quantitation cylinder SUV
- 2. Uniformity and artifacts uniform section
- 3. Spatial resolution cold rods

25, 16, 12, 8 mm

12.7, 11.1, 9.5, 7.9 mm

S. Cheenu Kappadath, PhD

AAPM 2014 50

3

Iterative Reconstruction (¹⁸FDG PET/CT)

Partial Volume Effect

- Arises from the effects of finite spatial resolution on the reconstructed PET activity distribution
 - Smears the activity distribution
 - Lower signal for object size smaller than 2σ

PET/CT: motion mis-registration

PET versus CT FOV registration

Bailey, Townsend, Valk, and Maisey, "Positron Emission Tomography," Springer-Verlag, 2005

Truncation Artifacts

S. Cheenu Kappadath, PhD

Image Courtesy: Osama Mawlawi AAPM 2014 56

SAM Question 3

All of the following affect PET image quality except:

7%	Α.	Reconstructio	n parameter
----	----	---------------	-------------

14% B. Scan duration

14% C. CT scan technique

7% D. Patient size

S. Cheenu Kappadath, PhD

SAM Question 3: Answer

- All of the following affect PET image quality except:
 - A. Reconstruction parameters
 - B. Scan duration
 - C. CT scan technique
 - D. Patient size
- Answer: C CT scan technique
- Reference: O Mawlawi, SC Kappadath, T Pan, E Rohren, HA Macapinlac, "Factors affecting quantification in PET/CT imaging," Current Medical Imaging Reviews 4, 34-45, 2008

S. Cheenu Kappadath, PhD

SAM Question 4

The minimum CT dose appropriate for PET/CT examinations are constrained by:

0% A. Accuracy of CT-based attenuation correction

14% B. Radiologist preference for CT image quality

10% C. Equalize the CT dose to the PET dose

7% D. Accuracy of PET scatter correction

S. Cheenu Kappadath, PhD

AAPM 2014 59

AAPM 2014 58

SAM Question 4: Answer

- The minimum CT dose appropriate for PET/CT examinations are constrained by:
 - A. Accuracy of CT-based attenuation correction
 - B. Radiologist preference for CT image quality
 - C. Equalize the CT dose to the PET dose
 - D. Accuracy of PET scatter correction
- Answer: B Radiologist preference for CT image quality
- Reference: FH Fahey, MR Palmer, KI Strauss, RE Zimmerman, RD Badawi, ST Treves, "Dosimetry and adequacy of CT-based attenuation correction for pediatric PET: Phantom study," Radiology 243, 96–104, 2007

S. Cheenu Kappadath, PhD

Recent Advances in PET/CT

- Recent advances
 - TOF PET
 - PSF modeling
 - Extended axial FOV
 - Gating for motion correction
- More recent advances
 - Continuous bed motion (Siemens FlowMotion)
 - Digital detectors (Philips Vereos)
 - Regularized reconstruction (GE Q.Clear)

Time-of-Flight PET Conventional Time-of-Flight THE ST -Probability along LOR $\Delta x = \frac{\Delta t}{2}c$ ∆t (ps) ∆x (cm) 600 9 Dobj SNRnon-TOF 100 1.5 $SNR_{TOF}\cong$ 0.33 0.5

S. Cheenu Kappadath, PhD

AAPM 2014 62

AAPM 2014 61

TOF PET Image Quality

S. Cheenu Kappadath, PhD

<section-header><section-header><section-header><complex-block><image><image><image><image><image><image>

Improvements in PET Image Quality

S. Cheenu Kappadath, PhD

AAPM 2014 65

Advantages of Extended Axial FOV

- Fewer bed positions for same axial coverage
- Increased sensitivity → time/bed ↓or counts/time ↑
- Net reduction in imaging time (or administered activity) for comparable image quality

S. Cheenu Kappadath, PhD

AAPM 2014 66

Image courtesy: D Townsend

SAM Question 5

The main advantage of a TOF PET scanner over a non-TOF PET scanner is:

A. Higher intrinsic spatial resolution
 B. Higher image contrast-to-noise ratio (CNR)

7% C. Higher count-rate performance

7% D. Lower number of detector elements needed

S. Cheenu Kappadath, PhD

AAPM 2014 67

SAM Question 5: Answer

- The main advantage of a TOF PET scanner over a non-TOF PET scanner is:
 - A. Higher intrinsic spatial resolution
 - B. Higher image contrast-to-noise ratio (CNR)
 - C. Higher count rate performance
 - D. Lower number of detector elements needed
- Answer: B Higher image contrast-to-noise ratio (CNR)
- Reference: M Conti, "Focus on time-of-flight PET: the benefits of improved time resolution," EJNMMI 38, 1147-1157, 2011

S. Cheenu Kappadath, PhD

AAPM 2014 68

Gating and List Mode

- Motion smears PET signal and reduced intensity
 PET is motion averaged therefore use (motion) average CT
- Trigger to sort PET data into bins to correct for organ motion – cardiac or respiratory gating

Motion Correction Software

- Goal is to improve image quality, contrast, and quantitative accuracy – respiratory motion
- Q.Freeze (GE): Phase-matched 4D PET/CT
- Q.Static (GE) and HD.Chest (Siemens): Use PET data from end-expiration when motion is low
- Other vendors also have 4D PET solutions

Continuous Bed Motion

S. Cheenu Kappadath, PhD

Continuous Bed Motion

Siemens FlowMotion mCT scanner

Regularized Reconstruction – GE Q.Clear

77 years male with follicular lymphoma, 80 kg, 25 BMI, 9.4 mCi, 60 min post injection

S. Cheenu Kappadath, PhD

AAPM 2014 74

Fully Digital PET/CT – Philips Vereos

- LYSO crystals + SiPM → Fully digital detectors
 Fast and high sensitivity
- TOF, PSF modeling, 4D capability

S. Cheenu Kappadath, PhD

References

- SR Cherry, JA Sorenson, ME Phelps, "Physics in Nuclear Medicine, 3rd Edition," Saunders Elsevier, 2003
- DL Bailey, DW Townsend, PE Valk, and MN Maisey, "Positron Emission Tomography," Springer-Verlag (London), 2005
- M Conti, "Focus on time-of-flight PET: the benefits of improved time resolution," EJNMMI 38, 1147-1157, 2011
- O Mawlawi, SC Kappadath, T Pan, E Rohren, HA Macapinlac, "Factors affecting quantification in PET/CT imaging," Current Medical Imaging Reviews 4, 34-45, 2008
- FH Fahey, MR Palmer, KJ Strauss, RE Zimmerman, RD Badawi, ST Treves, "Dosimetry and adequacy of CT-based attenuation correction for pediatric PET: Phantom study," Radiology 243, 96–104, 2007

S. Cheenu Kappadath, PhD