TG246 On Patient Dose From Diagnostic Radiation

Format Types and Morphometric Categories of Computational Phantoms

Wesley E. Bolch, PhD, PE, DABHP, FHPS, FAAPM
Department of Biomedical Engineering
University of Florida, Gainesville, FL

AAPM Imaging Symposium
2014 Annual Meeting of the AAPM, Austin, TX
July 23, 2014
Computational Anatomic Phantoms

Essential tool for organ dose assessment

• **Definition** - Computerized representation of human anatomy for use in radiation transport simulation of the medical imaging or radiation therapy procedure

• **Need for phantoms vary with the medical application**

 – **Nuclear Medicine**
 • 3D patient images generally not available, especially for children

 – **Diagnostic radiology and interventional fluoroscopy**
 • no 3D image

 – **Computed tomography**
 • 3D patient images available, problem – organ segmentation
 • No anatomic information at edges of scan coverage

 – **Radiotherapy**
 • Needed for characterizing out-of-field organ doses
 • Examples – IMRT scatter, proton therapy neutron dose
Computational Anatomic Phantoms
Phantom Types and Morphometric Categories

- **Phantom Format Types**
 - Stylized (or mathematical) phantoms
 - Voxel (or tomographic) phantoms
 - Hybrid (or NURBS/PM) phantoms
Format Types - Stylized Phantoms

1960s Stylized Phantom

Flexible but anatomically unrealistic

- Heart
- Liver
- Spleen
- Stomach
- Small intestine
- Ascending colon
- Descending colon
- Urinary bladder

Anatomy of ORNL stylized adult phantom
Selective History of Stylized Phantoms

<table>
<thead>
<tr>
<th>Developer</th>
<th>Nomenclature</th>
<th>Data Types</th>
<th>Human Subjects</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORNL, USA</td>
<td>Fisher-Synder Phantom</td>
<td>Quadric Equations</td>
<td>Caucasian NB, 1y, 5y, 10y, 15y, and adult</td>
<td>Fisher and Snyder 1966, 1967</td>
</tr>
<tr>
<td>NASA, USA</td>
<td>CAM</td>
<td>Quadric Equations</td>
<td>Caucasian adult male</td>
<td>Bilings and Yucker 1973</td>
</tr>
<tr>
<td>ORNL, USA</td>
<td>ORNL Pediatric Phantoms</td>
<td>Quadric Equations</td>
<td>Caucasian NB, 1y, 5y, 10y, and 15y</td>
<td>Deus and Poston 1976, Hwang et al 1976</td>
</tr>
<tr>
<td>GSF, Germany</td>
<td>ADAM and EVA</td>
<td>Quadric Equations</td>
<td>Caucasian adult male and female</td>
<td>Kramer et al 1982</td>
</tr>
<tr>
<td>ORNL, USA</td>
<td>ORNL Family of Stylized Phantoms</td>
<td>Quadric Equations</td>
<td>Based on previous ORNL phantoms</td>
<td>Cristy 1980, Cristy and Eckerman 1987</td>
</tr>
<tr>
<td>ORNL, USA</td>
<td>Pregnant Female Phantoms</td>
<td>Quadric Equations</td>
<td>Caucasian pregnant females at 3 preg stages</td>
<td>Stabin et al 1995</td>
</tr>
<tr>
<td>Radiation Protection Bureau, Canada</td>
<td>Embryo and Fetus (4 models)</td>
<td>Quadric Equations</td>
<td>Caucasian females at 8, 13, 26, 38 wk</td>
<td>Chen 2004</td>
</tr>
<tr>
<td>Hanyang University, Korea</td>
<td>KMIRD</td>
<td>Quadric Equations</td>
<td>Korean adult male</td>
<td>Park et al 2006</td>
</tr>
<tr>
<td>Nagoya Institute of Technology, Japan</td>
<td>Japanese Infants</td>
<td>Quadric Equations</td>
<td>Japanese 3-year-old</td>
<td>Hirata et al 2008</td>
</tr>
<tr>
<td>Key Laboratory, Beijing</td>
<td>CMP</td>
<td>Quadric Equations</td>
<td>Chinese adult male</td>
<td>Qiu et al 2008</td>
</tr>
<tr>
<td>Catholic University of Pusan, Bugok</td>
<td>Korean Male</td>
<td>Quadric Equations</td>
<td>Korean male</td>
<td>Kim et al 2010</td>
</tr>
<tr>
<td>Bhaba Atomic Research Centre, India</td>
<td>BARC WBC Phantoms</td>
<td>Quadric Equations</td>
<td>Indian adult male</td>
<td>Bhati et al 2011</td>
</tr>
<tr>
<td>ITN, Portugal</td>
<td>ITN WBC Phantom</td>
<td>Quadric Equations</td>
<td>Caucasian adult male</td>
<td>Bento et al 2012</td>
</tr>
</tbody>
</table>
Format Types - Voxel Phantoms

1980s Voxel Phantom

Anatomically Realistic but not very flexible

- Lungs
- Heart
- Liver
- Colon
- Small intestine
- Urinary bladder
- Testes

Anatomy of Korean male voxel phantom
Selective History of Voxel Phantoms

<table>
<thead>
<tr>
<th>Developer</th>
<th>Nomenclature</th>
<th>Data Types</th>
<th>Human Subjects</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vanderbilt University, USA</td>
<td>Gibbs Phantoms</td>
<td>Radiography</td>
<td>Caucasian female cadaver</td>
<td>Pujol and Gibbs 1982</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gibbs et al 1984, 1987</td>
</tr>
<tr>
<td>GSF / HMGU, Munich</td>
<td>BABY</td>
<td>CT</td>
<td>Caucasian 8wk female cadaver</td>
<td>Williams et al 1986</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Zankl et al 1988</td>
</tr>
<tr>
<td>GSF / HMGU, Munich</td>
<td>CHILD</td>
<td>CT</td>
<td>Caucasian 7y female patient</td>
<td>Williams et al 1986</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Zankl et al 1988</td>
</tr>
<tr>
<td>Yale University</td>
<td>Zubal Phantom</td>
<td>CT</td>
<td>Caucasian adult male</td>
<td>Zubal et al 1994</td>
</tr>
<tr>
<td>Yale University</td>
<td>MANTISSUE</td>
<td>CT</td>
<td>Caucasian adult male</td>
<td>Dawson et al 1997</td>
</tr>
<tr>
<td>University of Utah, USA</td>
<td>No Name</td>
<td>MRI</td>
<td>Caucasian adult male</td>
<td>Tinniswood et al 1998</td>
</tr>
<tr>
<td>Rensselaer Polytechnic Institute (RPI), USA</td>
<td>VIP-Man</td>
<td>Color Photos</td>
<td>Caucasian 39y male</td>
<td>Xu et al 2000</td>
</tr>
<tr>
<td>Yale University</td>
<td>VOXTISS</td>
<td>CT</td>
<td>Caucasian adult male</td>
<td>Sjogreen et al 2001</td>
</tr>
<tr>
<td>GSF / HMGU, Munich</td>
<td>GOLEM</td>
<td>CT</td>
<td>Caucasian 38y male patient</td>
<td>Zankl et al 2002</td>
</tr>
<tr>
<td>GSF / HMGU, Munich</td>
<td>VISIBLE HUMAN</td>
<td>CT</td>
<td>Caucasian 39y male cadaver</td>
<td>Zankl et al 2002</td>
</tr>
<tr>
<td>University of Florida, USA</td>
<td>UF Newborn</td>
<td>CT</td>
<td>Caucasian 6-day female</td>
<td>Nipper et al 2002</td>
</tr>
</tbody>
</table>
Selective History of Voxel Phantoms

<table>
<thead>
<tr>
<th>Developer</th>
<th>Nomenclature</th>
<th>Data Types</th>
<th>Human Subjects</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSF / HMGU, Munich</td>
<td>DONNA</td>
<td>CT</td>
<td>Caucasian 40y female patient</td>
<td>Petoussi et al 2002, Fill et al 2004</td>
</tr>
<tr>
<td>GSF / HMGU, Munich</td>
<td>FRANK</td>
<td>CT</td>
<td>Caucasian 48y male patient</td>
<td>Petoussi et al 2002</td>
</tr>
<tr>
<td>GSF / HMGU, Munich</td>
<td>HELGA</td>
<td>CT</td>
<td>Caucasian 26y female patient</td>
<td>Petoussi et al 2002, Fill et al 2004</td>
</tr>
<tr>
<td>FCS Department, Italy</td>
<td>DAM</td>
<td>MRI</td>
<td>34-year male volunteer</td>
<td>Mazzurana et al 2003</td>
</tr>
<tr>
<td>Federal University of Pernambuco, Brazil</td>
<td>MAX</td>
<td>CT</td>
<td>Caucasian adult male</td>
<td>Kramer et al 2003</td>
</tr>
<tr>
<td>Federal University of Pernambuco, Brazil</td>
<td>FAX</td>
<td>CT</td>
<td>Caucasian adult female</td>
<td>Kramer et al 2004</td>
</tr>
<tr>
<td>Hanyang University, South Korea</td>
<td>KORMAN</td>
<td>MRI</td>
<td>Korean 30y male</td>
<td>Lee et al 2004</td>
</tr>
<tr>
<td>Rensselaer Polytechnic Institute (RPI), USA</td>
<td>RANDO CT Phantom</td>
<td>CT</td>
<td>Adult male</td>
<td>Wang et al 2004</td>
</tr>
<tr>
<td>GSF / HMGU, Munich</td>
<td>LAURA</td>
<td>CT</td>
<td>Caucasian 43y female patient</td>
<td>Zankl et al 2005</td>
</tr>
<tr>
<td>Hanyang University, South Korea</td>
<td>KORWOMAN</td>
<td>MRI</td>
<td>Korean 35y female</td>
<td>Lee et al 2005</td>
</tr>
<tr>
<td>Hanyang University, South Korea</td>
<td>KTMAN-1</td>
<td>MRI</td>
<td>Korean 25y male volunteer</td>
<td>Lee et al 2005</td>
</tr>
<tr>
<td>University of Florida, USA</td>
<td>UF Series A</td>
<td>CT</td>
<td>9m, 11y, 14y males 4y, 8y females</td>
<td>Lee et al 2005</td>
</tr>
</tbody>
</table>
Selective History of Voxel Phantoms

<table>
<thead>
<tr>
<th>Developer</th>
<th>Nomenclature</th>
<th>Data Types</th>
<th>Human Subjects</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Health England (formerly HPA / NRPB)</td>
<td>NAOMI</td>
<td>MRI</td>
<td>Caucasian adult female</td>
<td>Dimbylow 2005</td>
</tr>
<tr>
<td>Public Health England (formerly HPA / NRPB)</td>
<td>NORMAN-05</td>
<td>MRI</td>
<td>Caucasian adult male</td>
<td>Ferrari and Gualdrini 2005</td>
</tr>
<tr>
<td>Federal University of Pernambuco, Brazil</td>
<td>MAX06 and FAX06</td>
<td>CT</td>
<td>Caucasian adult male and female</td>
<td>Kramer et al 2006</td>
</tr>
<tr>
<td>Hanyang University, South Korea</td>
<td>KTMAN-2</td>
<td>PET/CT</td>
<td>Korean 35y male volunteer</td>
<td>Lee et al 2006</td>
</tr>
<tr>
<td>Hanyang University, South Korea</td>
<td>HDRK-Man</td>
<td>Color Photos</td>
<td>Korean 35y male cadaver</td>
<td>Choi et al 2006</td>
</tr>
<tr>
<td>Public Health England (formerly HPA / NRPB)</td>
<td>Pregnat Females - 4 Models</td>
<td>Quadric Equations / MRI</td>
<td>Pregnat females at 8, 13, 26, and 38 wk</td>
<td>Dimbylow 2006</td>
</tr>
<tr>
<td>Korea Atomic Energy Research Inst, SK</td>
<td>Photographic voxel phantoms</td>
<td>Color Photos</td>
<td>Korean adult volunteers</td>
<td>Kim et al 2006</td>
</tr>
<tr>
<td>NIICT, Japan</td>
<td>TARO</td>
<td>MRI</td>
<td>Japanese 22y male</td>
<td>Lee et al 2006</td>
</tr>
<tr>
<td>University of Florida, USA</td>
<td>UF Series B</td>
<td>CT</td>
<td>9m, 11y, 14y males 4y, 8y females</td>
<td>Lee et al 2006</td>
</tr>
<tr>
<td>China Institute for Radiation Protection</td>
<td>CNMAN</td>
<td>Color Photos</td>
<td>Chinese adult male cadaver</td>
<td>Zhang et al 2007</td>
</tr>
<tr>
<td>GSF / HMGU, Munich</td>
<td>KATJA</td>
<td>MRI</td>
<td>Caucasian pregnant female at 24 weeks</td>
<td>Becker et al 2007</td>
</tr>
<tr>
<td>GSF / HMGU, Munich</td>
<td>REGINA (ICRP RF)</td>
<td>CT</td>
<td>Caucasian 43y female patient</td>
<td>Schlattl et al 2007</td>
</tr>
<tr>
<td>GSF / HMGU, Munich</td>
<td>REX (ICRP RM)</td>
<td>CT</td>
<td>Caucasian 38y male patient</td>
<td>Schlattl et al 2007</td>
</tr>
</tbody>
</table>
Selective History of Voxel Phantoms

<table>
<thead>
<tr>
<th>Developer</th>
<th>Nomenclature</th>
<th>Data Types</th>
<th>Human Subjects</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graz University of Technology, Austria</td>
<td>SILVY</td>
<td>MRI and CT</td>
<td>Caucasian pregnant females at 30 weeks</td>
<td>Chech et al 2007, 2008</td>
</tr>
<tr>
<td>University of Karlsruhe, Germany</td>
<td>MEET Mans</td>
<td>Color Photos</td>
<td>Caucasian 38y adult male cadaver</td>
<td>Doerfel & Heide 2007</td>
</tr>
<tr>
<td>NIICT, Japan</td>
<td>Deformed Children</td>
<td>MRI</td>
<td>Japanese 3y, 5y, and 7y children</td>
<td>Nagaoka et al 2008</td>
</tr>
<tr>
<td>ORNL, USA</td>
<td>VOXMAT</td>
<td>CT and Quadric Eqs</td>
<td>Caucasian adult male</td>
<td>Akkrut 2008</td>
</tr>
<tr>
<td>University Hospital of Leuven, Belgium</td>
<td>Phantom 1</td>
<td>MRI</td>
<td>33wk stillborn male</td>
<td>Smans et al 2008</td>
</tr>
<tr>
<td>University Hospital of Leuven, Belgium</td>
<td>Phantom 2</td>
<td>CT</td>
<td>22wk stillborn male</td>
<td>Smans et al 2008</td>
</tr>
<tr>
<td>Huazhong University, China</td>
<td>VCH</td>
<td>Color Photos</td>
<td>Chinese adult male cadaver</td>
<td>Zhang et al 2008, Sun et al 2013</td>
</tr>
<tr>
<td>INSERM, France</td>
<td>WBPM - 4 Phantoms</td>
<td>CT</td>
<td>27y male, 52y female, two 3y males</td>
<td>Alziar et al 2009</td>
</tr>
<tr>
<td>University of Houston USA</td>
<td>No Name</td>
<td>CT</td>
<td>10y male</td>
<td>Taddei et al 2009</td>
</tr>
<tr>
<td>ENEA, Italy</td>
<td>NUDEL</td>
<td>CT</td>
<td>Caucasian male</td>
<td>Ferrari 2010</td>
</tr>
<tr>
<td>Institute of Technology, Austria</td>
<td>MATSIM head and MATSIM torso</td>
<td>CT</td>
<td>ISS Astronaut</td>
<td>Beck et al 2011</td>
</tr>
</tbody>
</table>
Format Types – **Hybrid Phantoms**

2000s
Hybrid
Phantom

Realistic and flexible

Anatomy of UF hybrid adult male phantom
Selective History of Hybrid Phantoms

<table>
<thead>
<tr>
<th>Developer</th>
<th>Nomenclature</th>
<th>Data Types</th>
<th>Human Subjects</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duke University</td>
<td>NCAT</td>
<td>NURBS</td>
<td>Caucasian 39y male and 59y female</td>
<td>Segars 2001</td>
</tr>
<tr>
<td>Rensselaer Polytechnic Institute (RPI)</td>
<td>4D VIP Man - Chest</td>
<td>NURBS</td>
<td>Caucasian 39y male</td>
<td>Xu and Shi 2005, Zhang et al 2008</td>
</tr>
<tr>
<td>University of Houtson, USA</td>
<td>Pregnant Female</td>
<td>NURBS / CAD</td>
<td>Pregnant female at 34 weeks</td>
<td>Wu et al 2006</td>
</tr>
<tr>
<td>Rensselaer Polytechnic Institute (RPI)</td>
<td>RPI Pregnant Females</td>
<td>Polygon Mesh</td>
<td>3, 6, 9 months of pregnancy</td>
<td>Xu et al 2007</td>
</tr>
<tr>
<td>Duke University</td>
<td>MOBY / ROBY</td>
<td>NURBS</td>
<td>Mouse and Rate phantoms</td>
<td>Segars and Tsui 2007</td>
</tr>
<tr>
<td>Vanderbilt University, USA</td>
<td>Adult and Pediatric Phantoms - 7 models</td>
<td>NURBS</td>
<td>Newborn, 1y, 5y, 10y, 15y, and Adults</td>
<td>Stabin et al 2008</td>
</tr>
<tr>
<td>Rensselaer Polytechnic Institute (RPI)</td>
<td>Adult Breast Phantoms - 8 models</td>
<td>Polygon Mesh</td>
<td>Based on RPI-AF</td>
<td>Hegenbart et al. 2008</td>
</tr>
<tr>
<td>Rensselaer Polytechnic Institute (RPI)</td>
<td>RPI-AM and RPI-AF</td>
<td>Polygon Mesh</td>
<td>Reference adult male and adult female</td>
<td>Zhang 2009, Na et al 2010</td>
</tr>
<tr>
<td>Federal University of Penambuco, Brazil</td>
<td>FASH and MASH</td>
<td>Polygon Mesh</td>
<td>Adult male and female</td>
<td>Cassola et al 2010, Kramer et al 2010</td>
</tr>
<tr>
<td>IRSN, France</td>
<td>Thoracic Female Torso - 34 phantoms</td>
<td>Polygon Mesh / NURBS</td>
<td>Variations of the ICRP Adult Female</td>
<td>Farah et al 2010, Farah et al 2011</td>
</tr>
<tr>
<td>IT IS, Switzerland</td>
<td>Virtual Family - 4 phantoms</td>
<td>Polygon Mesh</td>
<td>Caucasian volunteers - adult and pediatric</td>
<td>Christ et al 2010</td>
</tr>
<tr>
<td>University of Florida, USA</td>
<td>UF Hybrid Reference Series</td>
<td>NURBS / Polygon Mesh</td>
<td>Newborn, 1y, 5y, 10y, 15y, and Adults</td>
<td>Lee et al 2010</td>
</tr>
<tr>
<td>Duke University</td>
<td>XCAT - 47 phantoms</td>
<td>NURBS</td>
<td>Scaled adult males and females</td>
<td>Fung et al 2011</td>
</tr>
<tr>
<td>Federal University of Penambuco, Brazil</td>
<td>FASH and MASH Phantom Series</td>
<td>Polygon Mesh</td>
<td>Adult males and females at 10th, 50th, 90th</td>
<td>Cassola et al 2011</td>
</tr>
</tbody>
</table>
Selective History of Hybrid Phantoms

<table>
<thead>
<tr>
<th>Developer</th>
<th>Nomenclature</th>
<th>Data Types</th>
<th>Human Subjects</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federal University of Penambuco, Brazil</td>
<td>Pediatric Phantoms</td>
<td>Polygon Mesh</td>
<td>5-year and 10-year males and females</td>
<td>de Melo Lima et al 2011</td>
</tr>
<tr>
<td>Hanyang University, Korea</td>
<td>PSRK-Man</td>
<td>Polygon Mesh</td>
<td>Korean male</td>
<td>Kim et al 2011</td>
</tr>
<tr>
<td>IRSN, France</td>
<td>Adult Male - 25 phantoms</td>
<td>Polygon Mesh / NURBS</td>
<td>25 whole-body male phantoms</td>
<td>Broggio et al 2011</td>
</tr>
<tr>
<td>University of Florida, USA</td>
<td>UF Hybrid Fetal Series</td>
<td>NURBS / Polygon Mesh</td>
<td>8, 10, 15, 20, 25, 30, 35, and 38 weeks</td>
<td>Maynard et al 2011</td>
</tr>
<tr>
<td>IT IS, Switzerland</td>
<td>Extended Virtual Family</td>
<td>Polygon Mesh</td>
<td>Caucasian volunteers - different gender/ages</td>
<td>IT IS 2011</td>
</tr>
<tr>
<td>Johns Hopkins University</td>
<td>Pediatric XCAT - 24 phantoms</td>
<td>NURBS</td>
<td>Rescaled from 39y male</td>
<td>Tward et al 2011</td>
</tr>
<tr>
<td>Rensselaer Polytechnic Institute (RPI)</td>
<td>Obese Adults</td>
<td>Polygon Mesh</td>
<td>Overweight, Obese, Morbidly Obese Adults</td>
<td>Ding et al 2012</td>
</tr>
<tr>
<td>Duke University</td>
<td>XCAT Library</td>
<td>NURBS</td>
<td>58 phantoms (35 male and 23 female)</td>
<td>Segars et al 2013</td>
</tr>
<tr>
<td>University of Florida, USA</td>
<td>UF Hybrid Phantom Library - 351 models</td>
<td>NURBS / Polygon Mesh</td>
<td>193 adults and 158 children</td>
<td>Geyers et al (2014)</td>
</tr>
<tr>
<td>University of Florida, USA</td>
<td>UF Hybrid Pregnant Female Series</td>
<td>NURBS / Polygon Mesh</td>
<td>8, 10, 15, 20, 25, 30, 35, and 38 weeks</td>
<td>Maynard et al (2014)</td>
</tr>
</tbody>
</table>
Hybrid Phantom Construction

Example of the process used at the University of Florida

Segment patient CT images using 3D-DOCTOR™

Convert into polygon mesh using 3D-DOCTOR™

Make NURBS model from polygon mesh using Rhinoceros™

Convert NURBS model into voxel model using MATLAB code Voxelizer

Hybrid Phantom Construction

Advantages of Hybrid over Voxel Phantoms – 3D shape of the body and organs

Lung of original UF voxel newborn phantom

Lung models of voxelized UF newborn hybrid phantom
Computational Anatomic Phantoms

Phantom Types and Categories

• **Phantom Format Types**
 - *Stylized (or mathematical) phantoms*
 - *Voxel (or tomographic) phantoms*
 - *Hybrid (or NURBS/PM) phantoms*

• **Phantom Morphometric Categories**
 - *Reference (50th percentile individual, patient matching by age only)*
 - *Patient-dependent (patient matched by nearest height / weight)*
 - *Patient-sculpted (patient matched to height, weight, and body contour)*
 - *Patient-specific (phantom uniquely matching patient morphometry)*
Morphometric Categories – Reference Phantoms

Reference Individual - An idealised male or female with characteristics defined by the ICRP for the purpose of radiological protection, and with the anatomical and physiological characteristics defined in ICRP Publication 89 (ICRP 2002).

<table>
<thead>
<tr>
<th>Age</th>
<th>Height (cm)</th>
<th>Mass (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male</td>
<td>Female</td>
</tr>
<tr>
<td>Newborn</td>
<td>51</td>
<td>51</td>
</tr>
<tr>
<td>1 year</td>
<td>76</td>
<td>76</td>
</tr>
<tr>
<td>5 years</td>
<td>109</td>
<td>109</td>
</tr>
<tr>
<td>10 years</td>
<td>138</td>
<td>138</td>
</tr>
<tr>
<td>15 years</td>
<td>167</td>
<td>161</td>
</tr>
<tr>
<td>Adult</td>
<td>176</td>
<td>163</td>
</tr>
</tbody>
</table>

Note – While organ size / mass are specified in an ICRP reference phantom, organ shape, depth, position within the body are not defined by reference values.
Reference Phantoms Used by the ICRP

Essentially all dose coefficients published to date by the ICRP are based on computational data generated using the ORNL stylized phantom series.

Exceptions include the following ICRP/ICRU Reports ...

• ICRP Publication 116 – External Dose Coefficients (2010)
• ICRU Report 84 – Cosmic Radiation Exposure to Aircrew (2010)
• ICRP Publication 123 – Assessment of Radiation Exposure of Astronauts in Space (2013)
Reference Phantoms Adopted by the ICRP

ICRP Publication 110 – Adult Reference Computational Phantoms

Upcoming Publications from ICRP using the Publication 110 Phantoms

• Reference specific absorbed fractions (SAF) for internal dosimetry
• Dose coefficients for radionuclide internal dosimetry following inhalation / ingestion
Reference Phantoms Adopted by the ICRP

In April 2014, ICRP established that its future reference phantoms for pediatric individuals would be based upon the UF series of hybrid phantoms.
Morphometric Categories – Patient Dependent Phantoms

Definition -
Expanded library of reference phantoms covering a range of height / weight percentiles

ICRP - based
UFHADM

NHANES Database
7320 individuals

Age
Weight
Standing height
Sitting height
BMI
Biacromial breadth
Biiliac breadth
Arm circumference
Waist circumference
Buttocks circumference
Thigh circumference

US based phantom library
10% 25% 50% 75% 90%

Reference weights @ 1 or more fixed anthropometric parameter(s)

NHANES - based
UFHADM
Morphometric Categories – Patient Dependent Phantoms

Patient-Dependent Hybrid Phantoms – UF Series

<table>
<thead>
<tr>
<th>Phantom Height (cm)</th>
<th>Pediatric Males</th>
<th>Pediatric Females</th>
<th>Phantom Height (cm)</th>
<th>Adult Males</th>
<th>Adult Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>185</td>
<td>UFHADM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>175</td>
<td>UFHADM</td>
<td>UFHADF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>165</td>
<td>UFH15M</td>
<td>UFHADF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>155</td>
<td>UFH15M</td>
<td>UFH15F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>145</td>
<td>UFH10M</td>
<td>UFH10F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>135</td>
<td>UFH10M</td>
<td>UFH10F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>UFH10M</td>
<td>UFH10F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>UFH05M</td>
<td>UFH05F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>UFH05M</td>
<td>UFH05F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>UFH05M</td>
<td>UFH05F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>UFH01M</td>
<td>UFH01F</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The naming convention for the UF phantom series begins with the identifier UFH (University of Florida Hybrid), followed by the reference phantom age in years (00, 01, 05, 10, 15 and AD for adult) and then the phantom gender (M for male and F for female).

Geyer et al. – Phys Med Biol (2014)
New UF/NCI Phantom Library - Children

Phantom for each height/weight combination further matching average values of body circumference from CDC survey data

85 pediatric males
73 pediatric females
New UF/NCI Phantom Library - Adults

Phantom for each height/weight combination further matching average values of body circumference from CDC survey data

100 adult males
93 adult females
Variations in CT organ dose with BMI

(A) Lungs

(B) Heart

(C) Liver

(D) Spleen
Applications to Skin Dose Mapping

\[D_{\text{skin}} = (K_{a,r}) \cdot (CF) \cdot \left(\frac{d_{\text{ref}}}{d_{\text{skin}}} \right)^2 \cdot (BSF) \cdot \left(\frac{\mu_{\text{en}}^{\text{skin}}}{\rho_{\text{air}}} \right) \cdot e^{-\mu d} \]

Skin Dose Maps on Morphometry Matched Hybrid Phantom

Med. Phys. 38 (10), October 2011
Applications to Skin Dose Mapping

\[D_{\text{skin}} = \left(K_{a,r} \right) \cdot (CF) \cdot \left(\frac{d_{\text{ref}}}{d_{\text{skin}}} \right)^2 \cdot (BSF) \cdot \left(\frac{\mu_{en}}{\rho} \right)^{\text{skin}}_{\text{air}} \cdot e^{-\mu d} \]
Applications to Organ Dosimetry

Fraction of total organ doses when considering only irradiation events that register a cumulative reference air kerma in the 90, 85, 75, 50, 40, and 25th percentile and above. Total number of irradiation events was 117.
Morphometric Categories – Patient-Sculpted Phantoms

• **The goal is to reshape** the outer body contour of your reference or patient-dependent phantom to uniquely match that of the individual patient.

• **By definition, no individual changes are made to internal organs** – both in terms of their relative shapes and positions.

• **However, as the torso or sitting height is adjusted to higher or lower values, the collection of internal organ volumes in the torso are increased or decreased, accordingly.** This scaling can be 1D (z), 2D (xy), or 3D (xyz).

• **Arms and legs can be adjusted separately if the phantom is designed as such.** Thus, patient **total height and sitting height** can be matched together.

• **Once the sitting or torso height is matched, body thicknesses can be adjusted to uniquely match those seen in the individual patient.** The additional phantom tissue volumes below the skin are then typically assigned to...
 - [Subcutaneous fat – OR –](#)
 - [Residual soft tissues – combination of subcutaneous fat, muscle, connective tissue](#)
Morphometric Categories – **Patient-Sculpted Phantoms**

- Possible methods of obtaining targeted outer body contour

 - Visual coupling of patient body contour to those of an extensive phantom library. Example – patient “looks” like UF phantom 129, and so we will use that phantom for assigning organ doses in CT.

 - Make tape measurements of arm, thigh, head, chest, abdomen, pelvis circumferences. Next, one would manually or possibility automatically through Rhino script files, “rescale” the closest matched phantom from an existing library.

 - Sculpt the patient phantom using existing CT image or perhaps a IR scanning systems as used in radiotherapy. Use that body contour image to “adjust” the body contour of the closest matched phantom from an existing library. For skin dosimetry in FGI, the contour image is all that is needed for skin dose mapping.
Morphometric Categories – Patient-Specific Phantoms

Holy Grail of Radiation Dosimetry!

• **Cannot be done if you don’t have the patient image!**

• **Even if you have these images, the problem is partial body coverage and segmentation!**
 - No global automation algorithms presently available
 - Specialized algorithms have been developed for select organs as part of TPS

• **However, one needs to ask the question – “How patient specific does my organ doses have to be?” In other words, what am I going to do with that dose?**

• **If it is to be used to estimate cancer incidence risks, you need to appreciate from where these risk coefficients are derived.**
 - Radiation epidemiology studies in which organ doses are crudely estimated by combinations of air kerma estimates and dose coefficients from ORNL stylized phantoms.
 - In conclusion, perhaps patient-specific phantoms are not needed, and patient-dependent libraries, with optional exterior sculpting, may be sufficient
Thank you for your attention!