

Measurement of Skin Dose – Sources of Uncertainty

Kenneth A. Fetterly, Ph.D. William Pavlicek, Ph.D. Dan Bednarek, PhD

2014 AAPM Annual Meeting, Austin Texas

Purpose

- Present a framework to recognize and minimize error associated with peak skin dose calculation.
- 2. Reduce known and substantial bias error to acceptable random error.
- 3. Suggest a real-world estimate of precision for reporting calculated skin dose.

Outline

- 1. Types of error
- 2. Reducing bias error to random error
- 3. Estimate a likely range of skin dose values

A tiered approach

- Single exposure event (foot pedal event)
- $\sqrt{}$ Single procedure (multiple exposure events)
 - Multiple procedures
 - Incorporate tissue repair processes

- $\sqrt{\bullet}$ First order correction factors MUST HAVE!
- \checkmark Higher order correction factors Even better!
 - Improve precision of correction factors

Types of error

- Bias
 - Unknown constant offset from actual value
 - Can lead to substantial error and must be corrected
 - Remedy by measured correction factor with acceptable random error

Types of error

- Random
 - Random offset from actual value
 - Instrumentation error
 - Intra and inter-observer variability
 - Unavoidable in physical systems
 - For relative uncertainties, combine by summation of the variances
 - Minimize individual error sources to minimize net uncertainty

TG246 Patient Dose with Diagnostic Radiations - Fluoroscopy

Chugh K, Dinu P, Bednarek DR, et al, Proc of SPIE 5367, 3464 (2004) ide-10

Incident AK Mapping From Clemence Bordier

©2013 MFMER | slide-11

Well known bias errors

- Air kerma (as reported by the system)
- Table and pad attenuation
 - Spectral effects
 - Angular incidence
- Table and pad forward scatter
- Tissue backscatter
- Soft-tissue f-factor
 - Homogeneity effects

Less well known bias errors

- X-ray source to skin distance
 - Lateral x-ray tube
 - Non-target anatomy (arms)
 - Patient position on table
 - Mismatch between virtual phantom and real patient

Even Less well known bias errors

- Overlapping fields
 - Same procedure
 - Subsequent procedure
- X-ray field shape
 - Secondary collimators
 - Area is known, width and length not in DSR
- Wedge filter
- Heel effect

MAYO

Imaging during system or patient movement

Strategy to manage bias error

- Apply correction factors for known sources of bias
- Investigate and address less known sources of bias
 - Review the images, including DICOM headers
 - Review the DICOM Dose Structured Report
 - Interview staff
- Assign realistic error estimates to correction factors
- Calculate overall error estimate
- Report a likely range of skin dose values

Example: Error mitigation

Modeling error as a normal distribution

- Approximation for unknown actual probability function.
- Provides a convenient mathematical foundation for combining sources of uncertainty.

•
$$P(\mu, \sigma, x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

• μ = mean (correction factor

Estimating error as normal distribution

- If standard deviation, σ is known, use it.
- If range of possible values is known, then approximate

 $2\sigma = \frac{1}{2}$ range

- Assigns *probability* of actual value
- Example
 - For range = 0.4, σ = 0.1

Approximating source to skin distance (SSD) uncertainty as a normal distribution

Assigned SSD (cm)	Estimated range of error	Estimated range of correction factors	Estimated range of relative uncertainty	Estimated σ
60 (AP)	±2 cm	0.93 to 1.07	± 0.07	0.035
60 (AP)	±5 cm	0.85 to 1.15	± 0.15	0.075
60 (Lat)	±10 cm	0.7 to 1.3	± 0.30	0.15

Propagation of normalized error

• For a composite correction factor, $\mu_c = \prod_i^l \mu_i$, assume that the normalized errors are uncorrelated and then combine variances by the delta method

•
$$\sigma_c^2 = \sum_i^I \sigma_i^2 \cdot \left[\prod_{j \neq i}^J \mu_j\right]^2$$

• $\sigma_c^2 = \left[\sum_i^I \sigma_i^2 \cdot \left[\prod_{j \neq i}^J \mu_j\right]^2\right]^{1/2}$
• Partial derivative of

Partial derivative of μ_c with respect to μ_j , where μ_c is the composite correction factor

Propagation of normalized error

- Assign an a reasonable normalized error to each correction factor.
 - Measured error
 - Range estimate
- Calculate the estimated composite error.
- The largest 1 or 2 single sources of error will dictate the magnitude of the composite error.
 - Identify and correct the largest sources of uncertainty to improve the precision of the skin dose estimate.

Single exposure error estimate

• For every estimate of skin dose, $D_f(x, y, z)$ • $D_f(x, y, z) = K_f \prod_i^I \mu_{f,i}$ • $\sigma_f = K_f \sigma_c = K_f \left[\sum_i^I \sigma_i^2 \cdot \left[\prod_{j \neq i}^J \mu_j \right]^2 \right]^{1/2}$

where f is the exposure event
and K is the air-kerma

Multiple exposure error propagation

- The same (or similarly derived) correction factors are used to calculate dose (D) for each exposure event (f).
- Therefore, the dose events are assumed to be highly correlated.
- Traditional "square root of the sum of the squares" error propagation assumes measurements are independent and is therefore incorrect.

Multiple exposure error propagation

Sum the dose (D) from all exposures.

$$D(x, y, z) = \sum_{f}^{F} D_{f}$$

Propagate error from all exposures.

•
$$\sigma_D^2 = \sum_f^F \pm \sigma_{D,f}^2 + \sum_{f_i \neq f_j}^F \left[\sigma_{D,f_i}^2 \cdot \sigma_{D,f_j}^2 \right]^{1/2}$$

 \uparrow \uparrow
Covariance matrix
iagonal elements off-diagonal elements

 The composite variance is the sum of the elements of the auto-covariance matrix of the individual dose error estimates.

Peak skin dose reporting

- For every estimate of skin dose, D(x, y, z)
 - Report a nominal expectation value D
 - Report the 95% CI associated with D

■ 95% CI = *D* ± 1.96 *σ*

Sample statement for patient record

"The interventional procedure performed on patient Austin Texas on 7-23-2014 had an estimated peak skin dose of 4.5 Gy (95% CI: 3.4 to 5.6 Gy)."

Summary

- Recognize sources of error associated with skin dose estimates.
- Reduce bias errors to random errors.
- Assign realistic error estimates to all correction factors.
- Report the expected skin dose and an estimated range of possible values.

