

Disclosures

- Research grant: NIH R01 EB001838
- Research grant: General Electric
- Research grant: Siemens Medical
- Research grant: Carestream Health

Outline

- How to understand risk associated with medical imaging in the context of medical physics:
 - 7 formative questions
- Organ dose in the context of other dose metrics

Imaging quality and safety

- Quality: Imaging provides a clinical benefit
 - Diagnostic information
 - Image quality: Universally-appreciated
 - Enhancement dependent on illusive criteria
- Safety: Imaging involves a level of "cost"
 - Monitory cost
 - Information excess
 - Radiation cost

1. Is the increase in the number of imaging exams bad?

- No necessarily so, provided that the exams render the needed medical information
- If benefit > risk, more exams means more benefit!

2. Are low-levels of radiation dose harmful?

(Ppidemining: 2010;1-10)

Diagnostic X-rays and risk of childhood leukaemia

2. Are low-levels of radiation dose harmful?

- Limited epidemiological data
- High degree of uncertainty in risk estimates
- No-threshold model questioned
 - AAPM, HPS, IOMP statements (<50 mSv => ???)
- Yet:
 - Applying reference diagnostic levels
 - 50% of AAPM talks speak to dose
 - ALARA: As low as reasonably achievable

We got to sort out our passive/aggressive attitude towards radiation risk

3. If the benefit >> risk, do we need to worry about risk?

- Yes!
- Primum non nocere, "first, do no harm"
- We are healthcare providers bound by an ethical obligation
- In the face of risk we are obligated to minimize the likelihood of harm no matter how big the benefit

4. If the risk is uncertain, do we need to worry about risk?

- Yes!
- Uncertainty ≠ absence
- Primum non nocere, "first, do no harm"
- We are healthcare providers bound by an ethical obligation
- In the face of uncertainty we are morally bound to take the safest path

5. Is there such thing as individual risk?

- Yes
- Risk is a statistical construct, likelihood estimated for a population, but ascribed to an individual
- Risk: Inherently uncertain for the individual yet that is what the risk is

6. Is risk additive?

- Yes!
- Even wo repair mechanisms, twice the dose means twice the likelihood of harm, whether the doses are at the same time or 5 years apart
- Counting cumulative or incremental dose for individual exam is up for debate

7. What about the exams when benefit is uncertain?

Dose metrology syntax

Metric	Definition
СТDI	Radiation output of a CT system in a standard sized phantom
SSDE	Radiation output of a CT system adjusted for the average patient size (for chest, abdomen/pelvis scans)
Organ dose	Dose to individual organs; estimated by simulation or experimental measurement
Effective Dose	Weighted sum of organ/tissue equivalent dose for radiation sensitive organs ignoring patient specific factors
Risk index	Weighted sum of organ/tissue equivalent risk for radiation sensitive organs, accounting for age, gender, anatomy

Samei, Ped Rad, in press, 2014

Metric	Measure-able	Modality generic	Scanner model and factors	Patient Size	Patient anatomy	Patientage	Patients Gender	Patient average total burden
CTDI	~		~					
SSDE	~		~	~				
Organ dose	~	~	~	~	~	~	r	
Effective Dose		~	~	V	V			~
Risk index		~	~	~	~	~	~	~

Organ dose: WHY?

- The only dose metric that
 - Accounts for specific patient attributes
 - Is an actual physical quantity (measureable)
 - Can be compared across modalities
 - Can be a solid basis for any risk estimation
- Caveat:
 - Non-scalar metric of radiation burden

Conclusions

- The increased use of imaging exams is a positive trend, not a negative one
- Existence of benefit and uncertainty does not negate the moral obligation for risk mitigation
- Imaging optimization requires individualized metrics of radiation burden
- Organ dose is the most meaningful metric of radiation burden with the caveat of the need for scalarization

Metric Definition CTDI Radiation output of a CT system in a standard sized phantom Output CTDI Rediation output of a CT system in a standard sized phantom

Dose metrology syntax

Dose metrology syntax

Metric	Definition
CTDI	Radiation output of a CT system in a standard sized phantom
SSDE	Radiation output of a CT system adjusted for the average patient size (for chest, abdomen/pelvis scans)
Organ dose	Dose to individual organs; estimated by simulation or experimental measurement
	· · · · · · · · · · · · · · · · · · ·
	Sahbaee, Samei, MP, in press, 20

Dose metrology syntax

Metric	Definition
CTDI	Radiation output of a CT system phantom
SSDE	Radiation output of a CT system ai patient size (for chest, abdomen/pelvis scans)
Organ dose	Dose to individual organs; estimated by simulation or experimental measurement
Effective Dose	Weighted sum of organ/tissue equivalent dose for radiation sensitive organs ignoring patient specific factors

Sahbaee, Samei, MP, in press, 2014

Organ dose: HOW?

- Precise estimation possible only if we overcome 4 challenges
 - 1. Knowing/modeling patient anatomy
 - 2. Modeling CT acquisition process
 - 3. Knowledge of irradiation condition
 - 4. Integration into clinical operation

Example Dose Distributions

	Carrier 🕈	7:58 PM Dose Results	L.		
	Eff	Effective Dose (mSv)			
atient Specific	-	Min	Max		
allent Specific	ICRP 110				
se Calculator	Organ Dose (mGy)				
			Max		
iPhone App	Marrow				
	Bone				
	Skin				
	Brain				
	Eyes				
	Larynx-Pharyn				
	Thyroid				
	Trach-Bronch				
	Esophagus				
	Lungs				
	Thymus				
	Breasts				
	Heart				
	Liver				
nei, MP, in press, 2014	Stomach	5.7	8.0		

