Quasi-Static Elastography

Timothy J. Hall Professor

Medical Physics Department

University of Wisconsin-Madison

Overview – Quasi-static Elastography

- Fundamental concepts in palpation elastography – Elasticity image formation
- Applications of palpation elastography

 Successes and failures
- Quantitative elastography
- Phantoms for elastography

Palpation & Disease

- Many disease processes are associated with changes in tissue stiffness
- Palpation has been used in medical investigations for millennia
- Palpation is a common tool for diagnosis
 - Clinical breast exam
 - Testicular exam
 - Digital rectal (prostate) exam

Quasi-Static Elasticity Imaging

- Use a standard clinical imaging system
 Ultrasound or MRI
- Acquire a map of anatomy
- Deform the tissue (at surface or remotely
 - Deformations are tin
 - Quasi-static systems use about 1% strain in 4cm of breast tissue (0.4mm displacement)
- Acquire another map of anatomy
- Track relative motion due to deformation
- Extract information about tissue viscoelasticty..

Quasi-Static Elasticity Imaging

How Do We Create Elasticity Images?

- Deformation of tissue causes the echo signal to change
 - Use that change to track tissue motion

Quasi-Static Elasticity Imaging

How Do We Create Elasticity Images? RF Echo (A-mode) Signals with 2% Compression

A small deformation (strain) of the tissue results in a small deformation of the signal

Quasi-Static Elasticity Imaging

Quasi-Static Elasticity Imaging

Motion Tracking with Block Matching

Displacement map

Quantitative Ultrasound Theory

Real-time Freehand Scanning

B-mode Ultrasound Elasticity (Mechanical Strain)

Applications of Quasi-Static Elastography

- 1 in 8 women get breast cancer
- 2nd most common cancer among women
 Changes in collagen microstructure and mechanical (stiffness) properties accompany pathologic changes
 - 70% of breast cancers (ages 20—44) detected by self-examination (palpation)
 More quantitative information from
 - maging...
 might help increase clinician confidence
 - and reduce biopsy rate of benign lesions
 improve communication among providers

Breast Quasi-Static Elastography

In widespread use

- Initial clinical research literature on breast elastography started nearly 20 years ago
- Hundreds of publications reporting diagnostic utility of strain imaging in breast
 - Many comparing methods of image interpretation
- · Recent consensus documents by professional organizations
 - 2013 European Federation of Societies for Ultrasound in Medicine and Biology (EFSUMB)
 Cosgrove, et al. Ultraschall in Med 34: 238–253, 2013
 - Cosgrove, et al. Otraschait in Med 34: 238–233, 2013
 2013 Japan Society of Ultrasonics in Medicine (JSUM)
 - Nakashima, et al. J Med Ultrasonics 40:359–391, 2013
 2014 World Federation of Ultrasound in Medicine and Biology
 - Barr, et al. Ultrasound Med Biol (2014) in press

Breast Quasi-Static Elastography

Invasive Lobular Carcinoma Malignant lesions are typically larger in strain than B-mode

Breast Quasi-Static Elastography

Lesion boundary is more clearly defined in the elasticity image – provides new information

Applications of Quasi-Static Elastography

Thyroid Elastography

- Lesion detectionBiopsy guidance
- Which to biopsy
 Treatment monitor
- Treatment monitoring
- Two recent meta-analyses

 ROC AUC for differentiating benign v. malignant lesions >0.90

Bojunga J, et al. Thyroid. 20(10):1145-50, 2010 (639 nodules)

Sun J, et al. J Ultrasound Med. 33(3):495-502, 2014 (1063 nodules)

Applications of Quasi-Static Elastography

Applications of Quasi-Static Elastography

Ablation Therapy Monitoring

- · Ablation zone barely visible on ultrasound (or CT without contrast)
- · Easily seen in strain images
- Size and shape of ablation zone in modulus reconstruction closely matches histology

Jiang, et al. Phys Med Biol 55(8):2281-306, 2010

Applications of Quasi-Static Elastography

Cervical Assessment During Pregnancy

- · Cervical softening is part of the progression from conception to delivery
- A soft cervix early in pregnancy is a risk factor for preterm birth
 - How soft is 'soft'???

Mid-Cervix scan scan Jiang, et al. World Congress on Biomechanics Boston, MA July, 2014

Strain imaging is a poor approach to estimate organ softness Feltovich and Hall Ultrasound Obstet Gynecol. 42(2): 121-128, 2013.

Contact Surface

Distal Cervix

Breast Quasi-Static Elastography

- Strain imaging is an option on ultrasound systems from nearly all manufacturers
- Easiest to use and interpret using linear arrays – Available on some curved linear and phased arrays
- Methods for image display vary among manufacturers
 - Side-by-side grayscale images (B-mode & strain) provide separate interpretation
 - Color overlay (strain on B-mode) provide relative deformation in the context of relative anatomy
 - Color lookup tables vary among manufacturers so interpret with caution!

Quasi-static (palpation-type) elastography is <u>not</u> well suited to evaluating:

13%	1.	Breast massess		
13%	2.	Thyroid masses		
23%	3.	Deep vein throm	bosis	
20%	4.	Ablation monitor	ing	
30%	5.	Uterine cervix sof	ftness	

Quasi-static (palpation-type) elastography is <u>**not**</u> well suited to evaluating:

1. Breast masses

Quasi-static elastography (strain imaging) is good at displaying variations in tissue stimmers but not well suited to estimating overall stiffness.

SccDee proveling through Docisis require detailed information about boundary conditions which are quite complicated in the cervix.

4. Ablation monitoring

→ 5. Uterine cervix softness

- SOURCE:
 - Feltovich and Hall. Ultrasound Obstet Gynecol. 42(2): 121-128, 2013.
 - Jiang, et al. World Congress on Biomechanics, Boston, MA July, 2014

Tools to Aid in Elasticity Image Analysis

Measures of elasticity image quality

Tools to Aid in Elasticity Image Analysis

- Automated boundary segmentation
- Mirroring segmentation
 Trace in one image
 - Trace in one image, display in both

Quantitative Elastography

Strain Ratio

'reference' tissue (fat) compared to the 'unknown' tissue

Zhi, et al. Acad Radiol 17: 1227-1233, 2010

Quantitative Elastography

Shear Wave Speed

- Induce a shear wave with acoustic radiation force
- Measure shear wave speed
- · Relate shear wave speed to shear modulus "Stiffness" on an absolute scale

Shear wave speed

B-mode

Quantitative Elastography

Elastic Modulus Reconstruction

Iterative Algorithm for Nonlinear Reconstruction Iterating between the forward and inverse solution

Quantitative Elastography

Elastic Modulus Reconstruction

- "Stiffness" on an absolute • scale
 - Comparison from one study to the next
 - Direct comparison among patients
 - Monitor therapy

Shear Modulus

u(x) = displacement μ(x) = shear modulus γ(x) = nonlinearity parameter

B-mode

Strain

Quasi-Static Elastography

Deformation-Dependent Contrast

Fibroadenoma

Elastic Nonlinearity

- Tissues become stiffer at large deformation
 - Estimate the slope (modulus) at very small strain
 - Estimate the rate of stiffening (nonlinearity parameter)

aul E. Barbone (BU)

Elastic Nonlinearity

Fibroadenoma

Invasive ductal carcinoma

Small strain shear modulus

parameter

Elastic Nonlinearity

Summary measures of

small-strain shear modulus (Mu) and nonlinearity parameter (Gamma)

TAKE AWAY POINTS

- IARE AWAY PUINTS
 Unknown preload for these data likely a larger difference in Mu values
 Nonlinearity parameter appears highly dependent on tissue type
 Elasticity imaging systems suffer in clinical trials without control for preload

Methods for Elasticity Imaging

- · Advantages of quasi-static (palpation-like) elastography
 - Conceptually simple
 - Can be implemented on most any ultrasound system
 - Generally easy to perform with training and practice
 - Can be converted to absolute elasticity (Young's modulus) with contact pressure measurement and a mathematical model
- Disadvantages of quasi-static elastography
 - Strain is a relative parameter (relative displacement) · Not an absolute measure of elasticity
 - Can be challenging to perform in some cases

Methods for Elasticity Imaging

Both quasi-static and radiation force elastography...

- Subject to boundary conditions of data acquisition
 - Both use standard ultrasound imaging systems but have their own limitations
 - Quasi-static elastography is easiest to perform when boundary conditions can be controlled; otherwise can be difficult
 - Radiation force elastography cannot "push" deep into tissue
- Subject to tissue elastic nonlinearity (tissues stiffen when deformed enough)
 The image obtained will depend on the initial preload (how hard you press)
 Large preload can reduce elastic contrast
- Large preioau can reduce elastic contrast
- Both methods have unique image artifacts
 - Decorrelation 'noise' in strain images due to poor motion tracking
 Odd patterns in strain images with more than one inclusion
 - Complicated shear wave propagation in heterogeneous media (breast)
 Shear wave reflection, other artifacts not well characterized in the literature
 Requires further study
- Both methods have demonstrated benefits in many clinical trials

A major advantage of quasi-static elastography v. shear wave elastography is:

13%	1.	The use of standard ultrasound transducers	
13%	2.	Imaging any organ in the body	
30%	3.	Doesn't depend on boundary conditions	
13%	4.	Ability to estimate elastic nonlinearity	
30%	5.	Same image no matter how hard I press	

A major advantage of quasi-static elastography v. shear wave elastography is:

1. Use of standard ultrasound transducers

2. Will the static elastography by bother shown to objectively estimate the nonlinear elastic properties of tissues.

3. Doesn't depend on boundary conditions

→ 4. Ability to estimate elastic nonlinearity

5. Same image no matter how hard I press

• SOURCE:

- Oberai, et al. Phys. Med. Biol. 54:1191–1207, 2009.
- Hall, et al. Current Medical Imaging Reviews 7(4):313-327, 2011.

Phantoms for Elastography

- What is the difference between a "phantom" and a "test object"?
 - A "test object" is a tool that might not be "known" from first principles but is used for investigating imaging system performance
 - A grape in Jello
 - A "phantom" is a test object who's behavior can be predicted from first principles and results compared with theory
 - Glass beads in agar to study acoustic scattering theory

Phantoms for Elastography

- Most ultrasound phantoms are made from water based gels
 - Gelatin, agar, polyacrylimide (Zerdine[™])
 - Non-water based: Urethane or oil-based gels
- Materials added to control acoustic properties
 - Sound speed; attenuation; scattering properties; acoustic nonlinearity (B/A), etc.
- Long history of controlling acoustic properties with great precision
- These materials are also compatible with MRI

Phantoms for Elastography

- Most ultrasound elastography phantoms are made from variants of the same materials
 - Polyacrylimide
 - Agar, gelatin, agar-gelatin combinations
- For elastography, its necessary to control the cross linking among these polymers
 - Control stiffness
 - Provide temporal stability in elastic properties
- · Relatively recent developments:
 - Control elastic nonlinearity
 - Control viscous response over specific frequency ranges
- No current material known to mimic both elastic nonlinearity and viscous response of tissue

Which of the following is *not* true regarding tissue-mimicking phantoms for elastography:

23%	1.	They have the same properties as tissue (that's what it means to be "tissue mimicking")
17%	2.	Specific material properties of phantoms can closely match those of tissue
10%	3.	No known tissue-mimicking material closely matches tissue for all elastography experiments
30%	4.	Most phantom materials are water-based gels with additives to control elastic and acoustic properties
20%	5.	Some phantoms are compatible with both ultrasound and MR elastography

Which of the following is *not* true regarding tissue-mimicking phantoms for elastography:

- 1. They have the same properties as tissue (that's what it means to be tissuemimicking).
 - 2. Specific material properties of phantoms can closely match those of tissue.
 - 3. No known tissue mimicking material closely matches tissue for all elastography experiments.
 - 4. Most materials are water-based gels with additives to control elastic and acoustic properties ..
 - 5. Some phantoms are compatible with both ultrasound and MR Elastography
 - SOURCE:
 - American Institute of Ultrasound in Medicine (AIUM) Recommended Terminology 3rd Edition. (2008)
 - Hall, et al. IEEE UFFC 44(6):1355-1365, 1997
 Pavan, et al. Phys Med Biol 57:4787–4804, 2012
 - Browne, et al. Ultrasound Med Biol 27(7): 1053-1060, 2003

Summary

- Palpation-type elastography continues to show great promise for improving diagnosis
- Continuing development of new approaches
 - Tools for image selection and interpretation
 - Quantitative elastography to reduce ambiguity
 - Nonlinear elasticity imaging to increase specificity
- International consensus documents on the appropriate use of the technology now available

Acknowledgements

- UW Medical Physics

 - UW Medical Physics Jingfeng Jiang Amy Sommer Ted Fisher Yuqi Wang Haidy Gerges Nasief James Zagzebski Ernest Madsen Gfary Frank
- UW Radiology
 Mai Elezaby, Elizabeth Burnside Rollins
 Sarah Kohn
- UW LOCI Kevin Eliceiri, Patty Keely
- Boston University
 Paul Barbone
- Rensselaer Polytechnic Institute
 Assad Oberai

- Universidade De SÃO PAULO
 Adilton Carneiro, Theo Pavan
- University of Kansas

 Candace Spalding, Yanning Zhu
- Charring Cross Hospital, London, UK - William Svensson, David Cosgrove
- Mayo Clinic, Rochester, MN Nicholas Hangiandreou, Gina Hesley
- Siemens Ultrasound - Andy Milkowski, Steve Barnes Liexiang Fan
- The National Institutes of Health Grant support