Focused Ultrasound in Drug Delivery and Nanomedicine

Brian O'Neill, PhD AAPM Annual Meeting July 2014

Thanks to: Nathan MacDannold, BWH Kathy Ferrara, UCD Natalya Rapoport, U. Utah

Motivation

- Delivering drugs exclusively to localized areas of disease should increase effectiveness and reduce side effects
- Nanoparticle drug carriers hold promise, but relying on natural targeting and drug release has failed to produce the expected results
- Focused ultrasound has advantages for "remote control" in tissue: deep penetration, accuracy on the mm scale, non-ionizing, feedback

Course Outline

- Mechanisms of Ultrasound-Material Interaction
- Ultrasound Alteration of Tissue Properties
 - Enhanced Delivery via Hyperthermia
 - BBB Disruption via Stable Cavitation
- Ultrasound Release from Drug Carriers
 - Induced Release from micelles and liposomes
 - Induced Release from microbubbles
 - Release from phase-change nanodroplets

Focused Ultrasound (HIFU or FUS)

- Diagnostic ultrasound: 1-2 cycle pulses (time resolution), 1-15 MHz (spatial resolution)
- Therapeutic ultrasound: 10³-10⁴ cycle pulses, 0.2-3 MHz
- Focused ultrasound: beam is directed to diffraction limited spot ie. width ~ wavelength by geometry (single element), or electronic shift of phase (multiple element array)
- With sound speed ~ 1.5 mm/us, 1MHz ultrasound has wavelength 1.5 mm, so this is beam waist
- length depends on transducer diameter, for f=D, length~7 mm
- Intensity at focus is:

$$I_f = TAP / area = I_{xducer} \times D^2 / d^2$$

- For InSightec D = 15 cm, so focusing factor is 10^4
- $I_{xducer} = 3 \text{ W/cm}^2$, so $I_f < 3x10^4 \text{ W/cm}^2$

Effects of Focused Ultrasound

Thermal effects

Hyperthermia (40-45 °C) -> altered blood flow, gene upregulation, inflammation, apoptosis
Thermal Ablation (50+ °C) -> cell death through necrosis
Thermal Dose:

$$TD_{43} = \int R^{T(t)-43} dt ; R \approx 4 (T < 43) |2(T > 43)$$

Thermal Conduction:

 $\rho c \dot{T}(\boldsymbol{x}, t) = \dot{Q}(\boldsymbol{x}, t) + k \nabla^2 T - w_b c_b \Delta T_b$

Effects of Focused Ultrasound

Mechanical effects

Cavitation (combination with bubbles)

 $MI \propto p_r/f^{0.5}$

$$\omega_{0} = \frac{1}{R_{0}} \left(\frac{3\gamma P_{0}}{\rho_{0}} \left(1 + \sigma \dots \right) \right)^{0.5}$$

Sonoporation and sonolysis -> cell membrane damage Sonochemistry -> ROS production

Radiation force/shear -> mechanotransduction, bioeffects

$$F = \alpha \frac{I(r)}{c_{v}}$$

Other??

Therapeutic Effects

HIFU-Enhanced Transport

- Working with ultrasound only very attractive because clinical translation of device is much easier
- Idea is that tissue transport properties (diffusion, permeability) are altered by HIFU
- 5+ years of work on mouse and rabbit models to understand mechanism

Pulsed-HIFU treatment

O'Neill, et al., JMRI 2013

Treatment Results

Transport at 24 hours (conclusion: thermal effect)

Ultrasound-mediated targeted drug delivery in the brain[†]

Nathan McDannold

Dept. Radiology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA

[†]used with permission

Blood-brain barrier (BBB)

BBB disruption with focused ultrasound

- Low-power, pulsed exposures
- Combined with ultrasound contrast agent (Optison, Definity)
- Temporary (~hours), localized, non-invasive

BBB disruption with Focused Ultrasound

- Occurs due to mechanically-induced changes and/or stimulation to vasculature
- Caused by microbubble/US interaction
- Not due to heating
- Exact mechanism(s) not known

Electron microscopy study: tight junctions

Results: # TJ proteins reduced after BBBD; restored at 4h

Sheikov et al. Ultras. Med Biol (2008)

BBB disruption with focused ultrasound

Mechanical interaction between US, microbubbles, and vessel walls results in:

- Transient disassembly of tight junction proteins
- Stimulation of active transport

At higher exposure levels, inertial cavitation occurs, leading to vessel damage

Electron microscopy study: active transport

N. Sheikov et al. Ultrasound Med. Biol. 2008

BBB disruption with focused ultrasound

Small animal studies:

- Reliably induce BBB disruption without tissue damage
- Deliver a range of molecules to the brain, including therapeutics
- Improve outcomes in animal disease models

Glioma, Alzheimer's

Alzheimer's model mouse Endogenous IgG (green) +Trypan blue bound to Amyloid plaque (red)

Characterizing BBBD with dynamic contrast enhanced MRI

J. Park et al. J Control Release. 2012

Summary of therapeutic agents delivered via FUS-BBBD

Chemotherapy

BCNU, methotrexate, doxorubicin, liposomal doxorubicin

Antibodies

Herceptin, BAM10 (Alzheimer's)

Nanoparticles

Magnetic nanoparticles Gold nanoparticles

Neuroprotective agent

BDNF, GDNF (Parkinson's, stroke, traumatic brain injury)

Viruses

siRNA for Htt (Huntington's disease)

Cells

Neural precursor cells (stem cells) Natural killer cells

Nothing!

BBBD *alone* might help Alzheimer's disease, induce neurogenesis

FUS Induced Release from Nanoparticles

- Two general approaches: Thermal and Mechanical
- Thermal: Competes with many other modalities: RF, laser, AMF
- Relies of heat sensitive liposomes, heat sensitive polymers – maybe reversible Mechanical: based on cavitation
- Microbubbles, nanodroplets not reversible

Thermally sensitive liposomes

Liposomes are spherical lipid bilayers that can be used for carrying hydrophilic drugs Problem: either too leaky or too stable Sol'n: Lipid bilayers undergo gel to liquid phase transition with temperature dependent on composition. Leaky during transition due to phase mismatch

LTSL: developed at Duke, now used many places

Mills & Needham, BBA Biomembranes, 2005; 1716(2):77–96

Thermal sensitive polymeric NPs

Many kinds of nanoparticles built of polymers as drug carriers – generally slow diffusion

Some polymers undergo conformational phase change that alters solubility in water (expansion, collapse, micelle formation, disassociation...)

Huge potential, barely scratching surface

Ablation + long circulating LTSL[†]

16 element annular array (IMASONIC)
3 MHz center frequency
14 MPa PPP, -7.7 MPa PNP
7 s CW, single spot >65 °C

[†]used with permission

⁶⁴Cu-LCL – no US

MRgFUS + ⁶⁴Cu-LCL

Complexation of Cu(II) and Dox within liposomes

Problem: Even liposomal doxorubicin has substantial cardiac toxicity and dose cannot exceed 500 mg/m² in lifetime.

Solution: Create a doxorubicin salt that is very stable in circulation

Kheirolomoom et al Molecular Pharmaceutics

Complex of Cu(II) & Dox with liposomes

Ferrara lab **Tumor growth** UNIVERSITY OF 5500 --- Control - e - Control+US 4500 Tumor growth, % ---- CuDox-LTSLs - - CuDox-LTSLs+US 3500 2500 US 1500 *** 500 2 -500 10 20 30 40 50 200 250 Day post treatment 120 100 Survival, % 80 Treat 2x/week, 4 weeks, -----Control 6 mg/kg 60 -CuDox-LTSLs 40 CuDox-LTSLs+US 20 * p<0.05 compared to control P<0.001 compared to control *** 0 50 200 250 0 100 150 Day post treatment Kheirolomoom et al, JCR 2013

Why do we favor thermally-sensitive nanoparticles?

%ID delivered depends on volume insonified, time of insonation 100 **Diameter** 10 ■ 0.5 cm %ID 1 **1** cm $\Box 2 \text{ cm}$ 0.1 ■ 4 cm 0.01 0.3 0.7 4.0 1.0 2.0 Time insonation (hrs)

Assumes 5% blood volume in tumor 10 sec tumor blood refresh 5 L blood volume

Non-Thermal Release

Release driven via pressure changes, cavitation – rapid release, no change in T
Types include drug loaded microbubbles, gas containing liposomes, liposomes attached to microbubbles, phase shifting 'nanodroplets'
The latter are PFC with bulk liquid-gas transitions around body temperature that

are held together by Laplace pressure: $\Delta P = \frac{2\sigma}{R}$

Liposomes or oil carriers on bubbles

Nanodroplets[†] (Courtesy of N. Rapoport, U. of Utah) Versatile structures with properties that depend on the core and shell compositions

[†]used with permission

Ultrasound effect on the nanodroplet

Scheme of the ultrasound-induced drug release

Ovarian Carcinoma Model

 Chemotherapy by PTX/PFP/PEG-PLLA nanodroplets and ultrasound

Rapoport, N. et al., J Control Release 2009; 138(3): 268-276

MRgFUS

- Small Animal LabFUS System (Image Guided Therapy, Inc.)
 - 16-element annular transducer, f = 3 MHz, $r_c = 3.5 \text{ cm}$

Rapoport, N. et al., J Control Release 2011; 153(1): 4-15

Treatment monitoring: MR Thermometry

Ultrasound Parameters

- •3-MHz
- •P = 3.4 MPa
- •1 x 3 mm focal spot
- •Grid trajectory, 4 x 5

mm

•5 minute sonication time

Coronal slice orientation

MR thermometry response

Maximum temperature projection in time

MR Parameters

- •SegEPI sequence, EPI=3
- •2x2x3 mm (ZFI to 1x1x3mm)
- •1.3 seconds
- •TR/TE = 60/10 ms
- •Flip angle = 15°
- •752 Hz/pixel

•Referenceless reconstruction

Tumor Resolution

Tumor cells were transfected with RFP; only viable cells generated fluorescence

Growth Curves Pancreatic Cancer

Lifespan results

Treatment Group	Average Life Span, weeks (mean ± std)
Control (N=7)	3.5 ± 0.5
No injection, MRgFUS (N=6)**	4.8 ± 2.3
Empty droplets, MRgFUS (N=6)**	3.5 ± 2.1
PTX droplets, no MRgFUS (N=7)	7.0 ± 0.8
PTX droplets, MRgFUS (CW, injection- MRgFUS time=8 hrs, N=8)***	10.3 ± 1.6

**Mice that died within several days after treatment (P>4.2 MPa) were excluded

***Survivors (N=2 for the grid trajectory) were excluded

Results Courtesy of N. Rapoport, U. of Utah

- PTX-loaded nanodroplets + MRgFUS dramatically decrease pancreatic tumor growth
- MR guidance improves treatment outcome
 - Detailed anatomic visualization
 - Tumor targeting and treatment planning
 - Real-time MR temperature imaging
- Treatment success is a function of ultrasound parameters
- In the absence of drug, hyperthermic conditions could increase perfusion and inflammation thus accelerating tumor growth.

Study Participants

Natalya Rapoport Allison Payne Christopher Dillon Jill Shea Roohi Gupta

University of Utah, Salt Lake City, Utah, USA

Understanding Ultrasound/Drug Synergy

- Going beyond the anecdotal evidence
- Look at thermal, mechanical interactions independently
- Understand biological mechanism
- Clues to what drugs might work best

1.4 **HIFU Treatment with Drugs** MTS measure of cell viability 0.4 0.6 0.8 1.0 1.2 (Sonodynamic Therapy?) 0.2 control 0.0 Ultrasound 0 0 0 0 3 5 3 5 3 5 3 5 pressure (MPa) Drug (20uM) RB1 RB2 RB3 Control 100 Viability on day 3 (%) 80 ■ HIFU duty cycle = 0% 60 ■ HIFU duty cycle = 30% ■ HIFU duty cycle = 50% 40 20 0 0.5 control 0 0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1.0 [Doxorubicin], ug/mL, N=8

Four Hours after Treatment, N=3

'Sonodynamic Therapy'

Four Hours after Treatment, N=3

Conclusions

Use of ultrasound to alter tissue properties or drive release from nanocarriers is a very promising approach to targeted drug delivery Challenges: need to visualize the target before you can hit it (metastatic disease problem)

- regular ultrasound limitations: no penetration in air, little through bone

Potential Areas for Application

Cancer – large or infiltrative tumor

Cardiac – plaques or thrombii

- Neuro target drugs to specific sites of the brain, spine
- Orthopedic joints, near surface bone lesions
- Ophthalmology drugs to the retina, through cornea

Others?