

Innovations in Clinical Breast Imaging

Dedicated breast CT

KaiYang, Ph.D. DABR

Department of Radiological Sciences University of Oklahoma Health Sciences Center kai-yang@ouhsc.edu

Contributors

- John M. Boone, Ph.D., University of California, Davis.
- Srinivasan Vedantham, Ph.D., UMass Medical School.
- Peymon Gazi, M.S., University of California, Davis.

Disclaimer

- Mention of any company or product does not constitute as endorsement.
- Dedicated breast CT has not been U.S. FDA approved for clinical use.

Learning objectives

To understand the following topics after this talk:

- Rationale for dedicated breast CT
- Current development and clinical studies of breast CT
- Challenges for dedicated breast CT
- Considerations on quality assurance

Breast CT (bCT)

Introduction

Development of bCT

Patient imaging / clinical studies Challenges for bCT Quality assurance for bCT Summary

Breast cancer facts and figures

About 40,000 deaths from breast cancer in 2011.

About 288,000 women diagnosed with breast cancer in 2011.

12.2% of women will get breast cancer sometime during their lifetime.

Table 1. Estimated New Female Breast CancerCases and Deaths by Age, US, 2011*

Age	In Situ Cases	Invasive Cases	Deaths
Under 40	1,780	11,330	1,160
Under 50	14,240	50,430	5,240
50-64	23,360	81,970	11,620
65+	20,050	98,080	22,550
All ages	57,650	230,480	39,520

*Rounded to the nearest 10.

Source: Total estimated cases are based on 1995-2007 incidence rates from 46 states as reported by the North American Association for Central Cancer Registries. Total estimated deaths are based on data from US Mortality Data, 1969-2007, National Center for Health Statistics, Centers for Disease Control and Prevention.

American Cancer Society, Surveillance Research, 2011

Table 5. Age-specific Probabilities of DevelopingInvasive Female Breast Cancer*

lf current age is	The probability of devloping breast cancer in the next 10 years is:	or 1 in:
20	0.06%	1,681
30	0.43%	232
40	1.45%	69
50	2.38%	42
60	3.45%	29
70	3.74%	27
Lifetime risk	12.15%	8

*Among those free of cancer at beginning of age interval. Based on cases diagnosed 2005-2007. Percentages and "1 in" numbers may not be numerically equivalent due to rounding.

Probability derived using NCI DevCan Software, Version 6.5.0.

American Cancer Society, Surveillance Research, 2011

Mammography: standard of care

Cancer prognosis and screening

Jemal A, et al., Cancer Statistics 2006 8

Major limitation of mammography

Tissue overlapping – "Anatomical noise" especially for dense breasts

Breast density in the U.S. (See pie chart)

- 10% of women have almost entirely fatty breasts
- 10% have extremely dense breasts
- 80% are classified into one of two middle categories

Breast density notification/reporting law

"If you have dense breast tissue, the odds of finding a cancer on your mammogram are about equal to a coin toss."

Dr. Stacey Vitiello

Rationale for a tomographic modality 2D vs. 3D

Background Noise

Anatomical Noise

low

Digital Subtraction Angiography (Temporal Subtraction)

Reduces Anatomical Noise

Dual Energy Chest Radiography (Energy Subtraction) Reduces Anatomical Noise

Rationale for a tomographic modality

Mammography

Breast CT (bCT)

Breast CT (bCT)

Introduction

Development of bCT
Patient imaging / clinical studies
Challenges for bCT
Quality assurance for bCT
Summary

Dedicated breast CT - Timeline

<u>1970's-80's</u>

Chang et al., Univ. of Kansas Med Ctr.

127 Xe detectors 1.56 x 1.56 x 10 mm 127 x 127 reconstruction CT #: -127 to 128 HU

1625 patients (78 cancers) IV contrast media 94% detection rate vs. 77% for mammography

Chang et al., Cancer 46:939-946, 1980. © American Cancer Society

<u>2000 onwards</u>

Boone et al., Radiology 221: 657-67, 2001.

Reported on glandular dose estimates with dedicated breast CT

Boone et al., Radiology 221: 657-67, 2001 © 2001 Radiological Society of North America

Slide contents courtesy: Srinivasan Vedantham, Ph.D., UMass

Dedicated breast CT- an ongoing research

- UC Davis '
- U Mass Worcester

- U Nurnberg
- U Rochester

- MD Anderson
- Duke
- Louisiana State University
- Universita di Napoli •
- Universitia di Bologna
- UC Irvine

Current <u>clinical</u> breast CT imaging

- Tungsten anode x-ray tube
- Cone beam geometry with flat panel detectors (CsI:Tl + a:Si)
- 10~20 seconds scanning time
- 300~512 images across the breast in 360 degrees
- FDK or iterative reconstruction

- Prone patient position
- Breast pendant through a hole
- No compression
- Equal radiation dose to 2-view mammography

BCT Specs – Representative Systems

Parameter	UC Davis (Doheny)	Koning Standard(UMass†)	Duke/Zumat ek	
X-ray tube	Varian M-1500	Varian Rad 71SP(M-1500)	Varian (Rad 94)	
Focal spot (mm)	0.3	0.1/0.3 (0.3)	0.4	
kVp/Filtration	6o kVp / Cu	49-60 kVp / Al	65 kVp / Ce	
1 st HVL (mm of Al)	~4.15	~1.4@49 kV	~3.0	
X-ray pulsing	Pulsed (3~8 ms)	Pulsed (8 ms)	Pulsed (25 ms)	
No. of projections	500~800	300	300	
Magnification factor	1.39	1.42	1.63	
Detector	Dexela 2923M	Varian PaxScan 4030 CB (4030 MCT [‡])	Varian PaxScan 2520	
Detector type	CMOS+ CsI:TI	a-Si + CsI:Tl	a-Si + CsI:Tl	
Detector [‡] pixel size/FPS	75 µm x 2 / 50	194 µm x 2 / 30	127 µm x 2 / 5	
Reconstruction / voxel (mm)	FBP / 110-200	FBP / 155 or 273	OSTR / 254 or 508	
⁺ Built to specific request by UMass				

* Reduced dead-space at chest-wall

Slide contents courtesy: Srinivasan Vedantham, Ph.D., UMass

Breast CT (bCT)

Introduction

Development of bCT

Patient imaging / clinical studies
Challenges for bCT
Quality assurance for bCT
Summary

Ongoing clinical studies (Partial list)

Locations:

- Univ. of California, Davis
- Univ. of Pittsburgh Medical Center
- Univ. of Rochester Medical Center
- UMass Medical School
- M.D. Anderson Cancer Center
- Medical University of South Carolina
- Duke University
- Emory University
- Elizabeth Wende Breast Care **Studies:**
 - Non-contrast breast CT
 - Contrast-enhanced breast CT
 - Dedicated breast CT with PET
 - Dedicated breast CT with SPECT

BCT (without injected contrast)

BCT (without injected contrast)

Pre-pectoral Saline Implants

Diagnosis: IDC/ILC

UC Davis January 2005

Breast CT clinical studies

Radiologist Subjective Scoring (N = 69)

K.K. Lindfors, et al. Radiology 246.3 (2008): 725.

BCT (with contrast injection)

Coronal

Contrast Enhanced bCT DCIS

Sagittal

Rt ML Mag view

Breast CT clinical studies

Contrast Agent Kinetics

Malignant tumors tend to enhance more than benign lesions

N. D. Prionas, et al Radiology 256, 714-723 (2010).

Post-contrast

ΔHU

Breast CT clinical studies

Comparison between modalities

N. D. Prionas, et al J. Invest Med 61, 132-132 (2013)

Breast CT (bCT)

Introduction

Development of bCT

Patient imaging / clinical studies

Challenges for bCT

Quality assurance for bCT

Summary

Demands on breast CT imaging

- **1.** Full 3D capability
- 2. Good soft-tissue differentiation
- 3. Dynamic imaging capabilities
- 4. High isotropic spatial resolution of about 100 μ m
- 5. Low patient dose with an AGD below 5 mGy
- 6. Patient comfort without breast compression
- 7. Low cost

Computed Tomography: Fundamentals, System Technology, Image Quality, Applications, 3rd Edition. Willi A. Kalender

Limitations for breast CT imaging

Radiation dose to the breast	Equal or less than two-view mammo
Patient's comfort	No breast compression Breath hold < 20 seconds Natural prone position
Available technology and the cost	Indirect flat panel detector (a-Si TFT or CMOS) Pulsed x-ray tube

Challenges for bCT

Mass-lesion detection Soft tissue differentiation Quantitative information Contrast kinetics

Micro-calcification detection

Spectrum optimization

Improve the spatial resolution

Improve the image SNR

Improve the accuracy of HU

Chest wall coverage Patient comfort

Table top/gantry design

Challenges for bCT – Spectrum

- Dose-normalized CNR (CNRD)
- **lodine contrast:**
- **Calcification contrast:**

60 kVp + 0.2 mm Cu

34

N.D. Prionas, S.Y. Huang, and J.M. Boone, Med. Phys. 38, 646 (2011)

Challenges for bCT – µCalcs detection

Spatial resolution

Flat panel detector – frame rate, MTF, DQE X-ray tube – focal spot, pulsed vs. continuous

Contrast resolution

Relatively high kV (49~80 kV vs. 20~30 kV in mammo). Potentially low contrast for calcifications.

Noise due to dose limit

To match the mean glandular dose of two-view mammo. Potentially low SNR in each projection image.

Challenges for bCT – μ Calcs detection

Spatial Resolution

	Breast CT	Mammography
Detector pixel size (mm)	388 (150*)	75~100
X-ray focal spot size (mm)	0.1~0.4	0.1~0.4
Magnification factor	1.5~2.0	1.0~2.0

* The "Doheny" scanner at UC Davis with a DEXELA CMOS detector. 36
UD Davis bCT MTF - system improvement

P Gazi*, TU-F-18C-7 Tuesday 4:30PM - 6:00PM Room: 18C

UD Davis bCT MTF - system improvement

P Gazi*, TU-F-18C-7 Tuesday 4:30PM - 6:00PM Room: 18C

Challenges for bCT - µCalcs detection

Radiation Dose vs. Noise

TABLE V. The minimum detectable MC sizes for various conditions for the small and the large breast phantoms.

Threshold	Breast phantom	MGD	X-ray tube voltage		
			60 kVp	8 kVp	100 kVp
		3 mGy	346	349	_
	Small	6 mGy	282	280	301
		12 mGy	253	258	259
50%					
		6 mGy	357	353	354
	Large	12 mGy	296	304	320
		24 mGy		270	279
		3 mGy	368	366	_
	Small	6 mGy	311	308	329
		12 mGy	261	264	271
75%					
		6 mGy	382	373	376
	Large	12 mGy	325	333	343
		24 mGy		298	301

Chao-Jen Lai, Chris C. Shaw, et al, Med. Phys. 34, 2995 (2007)

14 cm diameter f_g = 0.15 breast-equivalent phantom; Calcifications located at r = 3.5 cm.

FBP: 273 microns
Modified Shepp-LoganFBP: 155 microns
Ramp filterCan visualize 220 μm calcifications @ AGD
matched to diagnostic mammography (12 mGy)

Slide contents courtesy: Srinivasan Vedantham, Ph.D., UMass

Challenges for bCT – μ Calcs detection

BCT Denoise – Projection domain (PDEtomo)

Jessie Q. Xia et al, Medical Physics, 35, 1950-1958 (2008)

Challenges for bCT – µCalcs detection BCT Denoise – Projection domain (PDEtomo)

without denoise

with denoise

Jessie Q. Xia et al, Medical Physics, 35, 1950-1958 (2008)

Challenges for bCT – μ Calcs detection

BCT Denoise – CT image domain (iterative reconstruction).

FDK

ASD-POCS

ASD-POCS

Junguo Bian et al 2014 Phys. Med. Biol. 59 2659

Challenges for bCT – µCalcs detection BCT Denoise – CT image domain (iterative reconstruction). FDK PICCS

Zhihua Qi, et al AAPM Annual Meeting 2010

44

Challenges for bCT – Scatter

A. Kwan, et al, Medical Physics 32, 2967-2975 (2005) 4

Scatter correction approaches (Partial list)

CT image processing based

- Kachelriess et al. Medical Physics 33, 1269-1274 (2006).
- Altunbas et al. Medical Physics 34, 3109-18 (2007).
- Monte Carlo simulation based
 - · Gao at al Madical Physics at aby (6 (2010)

The absolute accuracy of HU is equally important as the image uniformity!

- Ning et al. Medical Physics 31, 1195-202 (2004).
- X. Tang, United States Patent No. US 6876718B2 (2005).
- Siewerdsen et al. Medical Physics 33, 187-97 (2006).
- Maltz et al. Medical Physics 35, 2452-62 (2008).
- Jin et al. Medical Physics 37, 5634-44 (2010).
- Niu et al. Medical Physics 38, 6027-38 (2011).
- I. Sechopoulos, Medical Physics 39, 2896 (2012).

Scatter Correction – The BPA Approach

200 300 400 500 SPR defined at various points

100

SPR Interpolated to entire image K. Yang, et al, Proc. SPIE, Vol. 8313, (2012), pp. 831303.

Scatter Correction – Cupping Correction

Scatter Correction – HU Accuracy

Challenges for bCT – Chest wall

Tabletop design Patient comfort level Physical limitations Focal spot location Detector dead space

Challenges for bCT – Chest wall

4

IOP PUBLISHING

Phys. Med. Biol. 58 (2013) 4099-4118

doi:10.1088/0031-9155/58/12/4099

Improving chest wall coverage

100

80

60

95%

-o-Prone - X - Upright

Dedicated breast CT: geometric design considerations to maximize posterior breast coverage

Srinivasan Vedantham, Andrew Karellas, Margaret M Emmons, Lawrence J Moss, Sarwat Hussain and Stephen P Baker

If using ideal tube/detector – breast CT would miss at the most 9 mm compared to mammography in 95% of women studied

Optimal swale depth, s_d^* depends on x-ray tube/detector dead-space and magnification [B - corresponds to the geometry with UMass prototype (3.2 cm)]

Breast CT (bCT)

Introduction

Development of bCT

Patient imaging / clinical studies Challenges for bCT Quality assurance for bCT Summary

Quality assurance for bCT

A combination of CT and Mammo?

Quality assurance for bCT

	 Mechanical stability and safety
	 kV accuracy, filtration and tube output linearity
no Style	• Focal spot size
	 Collimation and field coverage
	 Detector uniformity and lag

CT Style

Mamn

- Geometrical calibration (spatial accuracy)
 Image quality MTF and NPS
- HU accuracy One consolidated phantom?
- Cone beam artifact
- Chest wall coverage

CT + Mammo

- Radiation dose
- Image quality μCalcs, mass ACR phantom?

55

BCT QA – Radiation Dose

- Metric: Average Glandular Dose (AGD)
- Measure of radiation dose to "at-risk" glandular tissue
- Facilitates direct comparison with mammography
- Method:
 - Measure air kerma (mGy) at axis of rotation (AOR) without object (e.g., dosimetry phantom) over entire scan
 - Multiply by Monte Carlo-derived conversion factor (D_gN^{CT}) in units of (mGy/mGy)

Slide contents courtesy: Srinivasan Vedantham, Ph.D., UMass

BCT QA – Radiation Dose

2001 tape measure results (N = 200)

X = 13.4 cm σ = 2.0 cm Median = 13.6 cm

2008 assessment on bCT images (N = 137)

BCT QA – Radiation Dose Monte Carlo Assessment of Dose Deposition

monoenergetic functions

Mean Glandular Dose in Breast CT

spectral model*

*The TASMIP model, JM Boone and JA Seibert, Medical Physics 24;1661-670, 1997.

polyenergetic functions

Boone, JM., AIP Conf. Proc. 682, 3(2003)

Thacker, SC & Glick, SJ (2004). PMB, 49(24), 543359

Breast			
Diameter	0%	50%	1.00
(cm)	Gland	Gland	Gland
10.0	37	51	72
10.5	48	67	95
11.0	59	82	117
11.5	72	100	143
12.0	87	123	175
12.5	106	150	214
13.0	130	184	263
13.5	157	224	322
14.0	189	271	389
14.5	224	323	465
15.0	262	379	548
15.5	301	437	633
16.0	340	495	719
16.5	377	550	800
17.0	409	598	872
17.5	433	636	929
18.0	447	658	964
	Breast Diameter (cm) 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 15.5 16.0 16.5 17.0 17.5 18.0	Breast 0% Diameter 0% (cm) Gland 10.0 37 10.5 48 11.0 59 11.5 72 12.0 87 12.5 106 13.0 130 13.5 157 14.0 189 14.5 224 15.0 262 15.5 301 16.0 340 16.5 377 17.0 409 17.5 433 18.0 447	Breast 0% 50% Diameter 0% Gland Gland 10.0 37 51 10.5 48 67 11.0 59 82 11.5 72 100 12.0 87 123 12.5 106 150 13.0 130 184 13.5 157 224 14.0 189 271 14.5 224 323 15.0 262 379 15.5 301 437 16.0 340 495 16.5 377 550 17.0 409 598 17.5 433 636 18.0 447 658

mA setting on Cambria

Breast CT technique chart

Dose in breast CT is set to be **EQUAL** to the dose of two-view mammography for that women.

BCT Radiation dose: diagnostic studies

Personalized estimates of radiation dose from dedicated breast CT in a diagnostic population and comparison with diagnostic mammography

> Srinivasan Vedantham^{1,4}, Linxi Shi¹, Andrew Karellas¹, Avice M O'Connell² and David L Conover³

Median MGD from diagnostic breast CT is equivalent to 4-5 mammography views. Mean number of diagnostic mammography views in study: 4.53

40 **(B)** 35 Mean Glandular Dose [mGy] 30 \times × Max 25 95% 20 1SD 15 10 50% 1SD × Min 5 0 DxM [fg=0.5] DxM [fg=0.15] Breast CT

Median of MGD from diagnostic breast CT is similar to diagnostic mammography with smaller range.

Slide contents courtesy: Srinivasan Vedantham, Ph.D., UMass

IOP PUBLISHING

Phys. Med. Biol. 58 (2013) 7921-7936

BCT QA – Image Quality

Prionas, et al., PMB 57 2012: 4293

Breast CT (bCT)

Introduction

Development of bCT

Patient imaging / clinical studies Challenges for bCT Quality assurance for bCT Summary

Summary

- BCT can be performed in a dose efficient manner
- BCT almost certainly outperforms mammo for masses
- BCT might be possible for screening / need CALCS
- Needs to solve the challenges:

Resolution, SNR, Micro-Calcification, HU accuracy, and Chest wall

• BCT QA is a combination of CT and Mammo.

Question #1: <u>Compared to mammography</u>, current available clinical data showed that dedicated bCT_____

Question #1:

<u>Compared to mammography</u>, current available clinical data showed that dedicated bCT _____.

- 1. takes shorter time for the exam.
- 2. requires same amount of breast compression.
- 3. has a better coverage of the chest wall.
- 4. can detect micro-calcifications better.
- 5. can detect mass-lesions better.

Answer: 5. can detect mass-lesions better.

Reference: K.K. Lindfors, et al. Radiology 246.3 (2008) 725.

Question #2:

From one study mentioned in this talk, which of the following spectrum provides the highest dose-normalized CNR (CNRD) for bCT?

20%	1.	40 kV + 1.5 mm Al
20%	2.	60 kV + 1.5 mm Al
20%	3.	60 kV + 0. 2 mm Cu
20%	4.	60 kV + 0. 2 mm Sn
20%	5.	80 kV + 0.2 mm Cu

Question #2:

From one study mentioned in this talk, which of the following spectrum provides the highest dose-normalized CNR (CNRD) for bCT?

- 1. 40 kV + 1.5 mm Al
- 2. 60 kV + 1.5 mm Al
- 3. 60 kV + 0. 2 mm Cu
- 4. 60 kV + 0. 2 mm Sn
- 5. 80 kV + 0.2 mm Cu

Answer: 3. 60 kV + 0.2 mm Cu

Reference: N.D. Prionas, et al, Med. Phys. 38, 646 (2011)

Question #3:

As described in this talk, the radiation dose to the breast from a dedicated bCT scan is _____.

20%1. not related to the detection of micro-calcs.

20%2. independent to the size & density of the breast.

20%3. determined by the CTDI with a phantom.

20%4. proportional to the air kerma at isocenter.

20%5. unable to match mammographic procedures.

Question #3:

As described in this talk, the radiation dose to the breast from a dedicated bCT scan is _____.

- 1. not related to the detection of micro-calcs.
- 2. independent to the size & density of the breast.
- 3. determined by the CTDI with a phantom.
- 4. proportional to the air kerma at isocenter.
- 5. unable to match mammographic procedures.

Answer: 4. proportional to the air kerma at isocenter. Reference: Boone, J. M. et al Med. Phys. 32, 3767 (2005)

Acknowledgement

This work was supported by grants from the California Breast Cancer Research Program (Grant Nos. 7EB-0075 and 11 IB-0114), the National Cancer Institute (Grant No. CA-89260), the National Institute for Biomedical Imaging and Bioengineering (Grant No. EB002138-03), and the Susan G. Komen Foundation.

Acknowledgement

John

Boone

Loren

Niklason

Tom

Nelson

Karen Lindfors

Elizabeth

Krupinski

Tony Seibert Ramsey Badawi Cherry

Jeff

Siewerdsen

Shakeri

Craig John **Bishop** Abbey

Yanhong Zhang

Richard Bold

Ingrid

Alex

Hong Zhou

Norbert

Pelc

Whit Millor

Kai

Bruce

Hasegawa

Orlando Clare Velazquez Huang

Martin

Yaffe

Nathan

Packard

Katie Metheany

Carey

Floyd

Dandan Zheng

Maryellen

Giger

Anita

McKenny

Peymon Gazi

Varian Imaging Systems

Yang

Larry Partain **Gary Vishup** John Pavkovich Hussan Mostafavi **Gerhard Roos** Ed Seppi **Cesar Proano**

Boling

George **Burkett**

Desiree Fareedah Simon Lazo

John Brock

Xiaochuan

Pan

Ray

Jessie

Xia

Nicolas **Prionas**

deceased

Nosratieh

Lin Chen

Sarah

Junguo

Bian

