An Overview of the Medical Physicist’s Roles in MR Safety for our Large Clinical Practice

Matt A. Bernstein, Ph.D.
Professor of Medical Physics

Department of Radiology
Department of Physiology, and Biomedical Engineering

Mayo Clinic
Rochester, Minnesota U.S.A.

Outline

• A “large” clinical practice
• Review of FDA and IEC physical limits
• A few Site Planning considerations
• Safety Education
• MR Safety Committee

Disclosures

Grant Support: NIH
Rochester, Minnesota Campus

Mayo Clinic MR Practice

- Mayo Clinic Rochester Campus:
 - 26 Clinical MRI scanners
 - A variety of:
 - GE and Siemens
 - 1.5T and 3T
 - 60 and 70 cm bore
 - ~75,000 MR exams per year

Outline

- A “large” clinical practice
- Review of FDA and IEC physical limits
- A few Site Planning considerations
- Safety Education
- MR Safety Committee

FDA and IEC Limits for MR

- U.S. Food and Drug Administration (FDA) criteria
- International Electrotechnical Commission (IEC)
 - 82 member countries
 - develop standards
 - IEC 60601-2-33 (ed. 3.1) sets limits pertaining to MR
- As 6/30/13, FDA required manufactures to comply w/ IEC 60601
- Physicist’s role with these limits:
 - become familiar with them
 - use our training and background to interpret them
 - provide guidance to Radiologists and other medical professionals in a team setting
FDA Significant Risk Operation for MR

- Last Updated: June 20, 2014
- Sets limits pertaining to 4 physical aspects of MR:
 1. Main Static Magnetic Field
 2. Specific Absorption Rate (SAR)
 3. Gradient Field Rate of Change (Peripheral Nerve Stimulation)
 4. Sound Pressure Level (Acoustic Noise)

- Staying below the stated limits
 - non-significant risk (NSR) operation for physical parameters
 (although other risks may be present in exam)

1. FDA: Main Static Magnetic Field

![Main Static Magnetic Field Table]

- Virtually all clinical MR performed at 3.0T or less

2. FDA: Specific Absorption Rate (SAR) limits

<table>
<thead>
<tr>
<th>Site</th>
<th>Dose</th>
<th>Time (min) equal to or greater than:</th>
<th>SAR (W/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>whole body</td>
<td>averaged over</td>
<td>15</td>
<td>>4</td>
</tr>
<tr>
<td>head</td>
<td>averaged over</td>
<td>10</td>
<td>>3.2</td>
</tr>
</tbody>
</table>

- These limits are “absolute” maxima:
 - FDA does not define operating modes

- In 2013, FDA adopted the IEC limits for MRI manufacturers
 - IEC: Normal and First Level Operating Modes

IEC/FDA: SAR

<table>
<thead>
<tr>
<th>Operating Mode</th>
<th>Whole Body SAR (W/kg)</th>
<th>Head SAR (W/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>2</td>
<td>3.2</td>
</tr>
<tr>
<td>First Level Controlled</td>
<td>4</td>
<td>3.2</td>
</tr>
</tbody>
</table>

- Normal Operating Mode: No outputs cause physiologic stress
 - suitable for: Any patient with impaired heat regulation
 - pregnant/neonate patients
 - appropriate for some implanted MR Conditional devices
 - Use of Normal Mode often NOT sufficient!
 - Always check specific package labeling!

- First Level Controlled Mode:
 - controlled by Medical Supervision (suitable for most patients)
IEC/FDA: SAR

<table>
<thead>
<tr>
<th>Operating Mode</th>
<th>Whole Body SAR (W/kg)</th>
<th>Head SAR (W/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>2</td>
<td>3.2</td>
</tr>
<tr>
<td>First Level Controlled</td>
<td>4</td>
<td>3.2</td>
</tr>
</tbody>
</table>

- IEC: Some situations when we can apply higher SAR:
 - these limits for volume transmit: local transmit coils can go higher
 - "Partial Body" prorates SAR up to a maximum of 10 W/kg
 - based on 6-min averaging period (10 s period: 2x limits)
 - Second Level Controlled mode required to go higher (IRB only)

- IEC: Other times we must adhere to a lower limit:
 - SAR limits reduced based on increased room temp: 25-32°C

IEC “Partial Body” SAR

- See IEC document for more details

IEC’s Supplement to SAR: Root mean square B1+

- B1+ is the useful component of the RF field at center of transmit coil

\[
B_{1+RMS} = \sqrt{\frac{\int_0^{t_x} (B_{1+}(t))^2 \, dt}{t_x}}
\]

(typically ~1-10 μT)

- Advantages:
 - more comparable across vendors than SAR
 - now reported by scanners (in recent software releases)

- Drawbacks:
 - heating depends on both B1+_{rms} and B0 field strength
 - SAR has a long “history” of usage
 - B1+_{rms} limits not yet widely specified for implants
• Temperature rise is ultimately what we care about...
 • ...but it is difficult to estimate
 • SAR (or B1+rms) is correlated and a convenient surrogate
• Implanted devices:
 • higher localized temperature rise at lead tip → Lower SAR limits!

IEC’s Supplement to SAR: Temperature Rise Limits

<table>
<thead>
<tr>
<th>Operating Mode</th>
<th>Max. Rise of Core Temperature ΔT_{max} ($^\circ$C)</th>
<th>Max. Core and Local Temperature T_{max} ($^\circ$C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>0.5</td>
<td>39</td>
</tr>
<tr>
<td>First Level Controlled</td>
<td>1</td>
<td>40</td>
</tr>
</tbody>
</table>

Lead-Tip Heating Model

$$\Delta T = A \int_0^L S_1(z) E_{\text{tan}}(z) dz$$

• Temperature rise is expected to increase with conductor length at least up to $\frac{1}{2}$ wavelength
• Simulations also show electric field E tends to increase away from the midline

*Park et al, JMRI 2007
 Nyenhuis JA General Assembly and Scientific Symposium, 2011 XXXth URSI

DBS System

- Implantable Pulse Generator (IPG)
- Lead tip electrode

E-field Simulation

- Simulations also show electric field E tends to increase away from the midline

*Park et al, JMRI 2007
 Nyenhuis JA General Assembly and Scientific Symposium, 2011 XXXth URSI

Lead-Tip Heating Model

- Simulations also show electric field E tends to increase away from the midline

*Park et al, JMRI 2007
 Nyenhuis JA General Assembly and Scientific Symposium, 2011 XXXth URSI

DBS System

- Implantable Pulse Generator (IPG)
- Lead tip electrode

DBS System

- Implantable Pulse Generator (IPG)
- Lead tip electrode

3. FDA: Peripheral Nerve Stimulation

“Any time rate of change of gradient fields (dB/dt) sufficient to produce severe discomfort or painful nerve stimulation”

\[
\frac{dB}{dt} \propto \frac{dG}{dr} \times r = \text{gradient slew rate} \times (\text{some characteristic length})
\]

- Some older GE MRI systems (TwinSpeed): Whole body vs. Zoom
- This FDA limit qualitative: clearly to be taken as a maximum
- IEC provides a more quantitative limit

IEC/FDA: Nerve Stimulation

- \(t_{\text{eff}} \) is gradient ramp time, typically \(\sim 0.1-1 \text{ ms} \)
- PNS can be uncomfortable, safety concern w/ implanted devices and wires
- MRI operates far below the cardiac stimulation threshold

IEC/FDA: Nerve Stimulation

- Operator chooses First Level Control or Normal mode for dB/dt (GE)
- Other scanners: accept/decline pop-up for First Level operation (Siemens)
- Normal Operating Mode: increases minimum TE and echo spacing

IEC/FDA: Nerve Stimulation

- 2-parameter empirical fit:
 \[
 \frac{dB}{dt}_{\text{First Level}} = \left(\frac{20 \text{T/s}}{s} \right) \times \left(1 + \frac{0.36 \text{ ms}}{t_{\text{eff}}} \right)
 \]
- Asymptote = 20 T/s in First Level, 80% in Normal mode

IEC/FDA: Nerve Stimulation

- Adapated from IEC 60601-2-33 (ed. 3.1)
4. FDA/IEC: Sound Pressure Level

- Peak unweighted sound pressure level > 140 dB
- A-weighted root mean square (rms) sound pressure level > 99 dB(A) with hearing protection in place (the IEC states equivalent limits)

- A-weighted criterion: Exceeded without hearing protection
 - gradient noise typically in 95-115 dB(A) range
 - typical earplugs attenuate 25-35 dB(A)

- Hearing protection required!

Outcomes

- A "large" clinical practice
- Review of FDA and IEC physical limits
- A few Site Planning considerations
- Safety Education
- MR Safety Committee
Selected Site Planning Considerations Related to MR Safety

- Restrict access to Zones III and IV
- Fringe (stray) fields
 - bloom field
- Adequate cryo-venting
 - quench button location(s) and covers
 - scan room door to swing IN or OUT of magnet room?
- Code response area in Zone III (ante room)
 - removable table or trolley system

Stray Fields: Routine Considerations

- ACR White Paper¹:
 - Exclude 5-gauss line (0.5 mT) from Zones I and II
 - May require shielding: siliconized steel

Stray Fields: Other Considerations

- Bloom field (during quench)
 - field lines can bloom ~2x more distant from magnet
 - only occurs during a quench of an actively shielded magnet
 - extremely rare event!
 - Details depend on the specific magnet design (ask vendor)
 - typically lasts ~30 seconds

¹Kanal et al., JMRI 2013
Scan Room Door: Swing In or Out?

- Some older guidance was to have door swing out
- We design our rooms to have the doors swing IN

by itself, an appropriate means of pressure relief. In a severe positive pressure situation unlatching an outward-swinging door might permit the door to burst open with tremendous pressure, potentially injuring person(s) opening the door. If used as the only means
- Swing IN gives more room in a code situation

Kanal et al., JMRI 2013

Scan Room Door: Swing In or Out?

- Want/need scan room to be RF-tight....NOT airtight!
 - copper exhaust grille in Zone IV ceiling, near door along with Fan system, as recommended in ACR white paper

Selected Site Planning Considerations

- Patient communication/visibility
 - intercom, squeeze bulb alarm
 - operator’s console window, closed-circuit TV monitoring
- Provisions for ferromagnetic detectors
- "Safety Cabinet"
Non-ferromagnetic:
• 5-min Air Supply mask
• Fire Extinguisher

Outline
• A “large” clinical practice
• Review of FDA and IEC physical limits
• A few Site Planning considerations

• Safety Education
• MR Safety Committee

MR Safety Education Audiences
• Technologists’ Inservice
• New Radiology Residents
• New non-Radiology Residents (focus on implanted devices)
• Research postdocs and graduate students
• Nurses and CRNA’s
• Interpreters
• Cleaning Staff
• (Campus) Security
• City Firefighters
Outline

• A “large” clinical practice
• Review of FDA and IEC physical limits
• A few Site Planning considerations
• Safety Education
• MR Safety Committee

MR Safety Committee

• Interdisciplinary membership comprises:
 • Radiologists
 • MR Physicists
 • Technologists
 • Nurses
 • MR Service personnel
 • Administration
 • Anesthesia personnel
• Problem solving rather than regulatory focus:
 • We advise other Committees charged with regulatory compliance (e.g., MedWatch reporting)

MR Safety Committee Activities

• Generate and review policies
• Generate and review guidelines (e.g., implanted devices)
 • aim to provide the Radiologist and Medical team latitude
• Generate online safety test for Zone III keycard access
• Review safety incidents and near misses
 • look for root causes in a non-judgmental manner
 • can a process be improved?
 • is additional education needed?

MR Safety Committee Activities

• Weigh risk-benefit ratio in specific “high-risk” MR exams
 • can another imaging modality provide the answer?
 • what are the physics behind the risks?
 • could the manufacturing labeling be overly conservative?
 • has a similar exam been reported in the peer-reviewed literature?
 • is a similar exam being performed routinely outside the US?
 • what type of patient consent will be needed?
 • none?
 • oral consent?
 • written consent?
 • is this scanning research? Will IRB guidance be needed?
• Interdisciplinary nature of the team is key
Acknowledgement

Robert E. Watson MD, PhD* (Safety Committee Chair, and MR Safety Medical Director at Rochester, Minnesota)
Heidi Edmonson PhD*
Joel Felmllee PhD
Kris Gorny PhD
Kiaran McGee PhD*
Deborah Raygor R.T. (R)*
Yunhong Shu PhD

*Couldn't be here today