2014 AAPM 56th Annual Meeting

Safety in the MRI-guided Interventional Environment

Krzysztof Gorny

Mayo Clinic, Rochester, MN

- **MR-guided Focused Ultrasound** (fibroids, painful bone metastases, prostate)
- MRI-guided Cryoablations (post-prostatectomy cancer recurrences, vascular maformations)
- MRI-guided Laser ablations (refractory eplilepsy, liver metastases)

Equipment

Why do it?

• <u>Advantages</u>

- Minimal invasiveness
- Soft-tissue Resolution
- Increased Lesion Conspicuity
- Ease of Multiplanar imaging
- No Radiation
- Ability to Re-image same slice
- MR thermometry
- **Disadvantages**
 - Exam time
 - Lack of Compatible Equipment
 - Lack of Familiarity

- ultrasound ablation system integrated with MRI scanner
- treatments of uterine fibroids, bone metastases, prostate cancer
- 278 fibroid patients treated at Mayo Clinic since 2005
- beginning to treat bone metastases (1 treatment so far) and prostate cancer

MR thermometry

27.0 sec

MR thermometry

thermal dose sufficient for tissue ablation

T2w image with dose overlay

post treatment T1w image with Gd

Contrast enhanced T1-weighted images are acquired for treatment assessment.

Treatment-related risks

• Skin Burns (c-section scars, bad acoustic interface at patient skin)

T2-weighted image

MR-thermometry

Post-treatment T1 with contrast

Treatment-related risks

- Skin Burns (c-section scars, bad acoustic interface at patient skin)
- Bowel Perforation (failure to detect fibroid movement, poor monitoring, artifact obscuring bowel)
- Nerve Injury (sonicating too close to nerves or spine)
- Subcutaneous Fat Edema (excessive absorption of US energy in near field)
- Deep Vein Thrombosis (extended time inside MRI scanner >3hrs)
- Increased projectile risk (frequent entry of nursing, tech personnel for administration od sedation, adjustments of patient position, catheter manipulation)

- Prostate cancer tissues are ablated by freezing to lethal temperatures of -40°C.
- Patients in whom the cancer returned after initial surgery (prostatectomy) and/or radiation therapy.
- MRI is capable of resolving of subtle cancer recurrences in post-prostatectomy prostate bed

Joule-Thomson effect (adiabatic expansion of gas)

- Cryoneedles inserted into sites of cancer recurrences
- Argon cools to -186°C (freezing). Helium warms to +33°C (thawing).
- Saline used to increase separation between rectal walls and prostate bed
- Warming catheter inserted into urethra to protect urethral tissues

Joule-Thomson effect (adiabatic expansion of gas)

• MRI used to monitor ice ball growth

Cryoablation system

- Seednet Machine with connector panels
- Argon and Helium gas tanks

Cryoablation system

- Seednet Machine with connector panels
- Argon and Helium gas tanks
- MRI-compatible tripod with cryoneedles

In-room setup

- Sterile area (arranged on MRI-safe cart)
- MRI-compatible in-room monitor
- MRI-compatible surgical light

MR guided Cryoablation Set-Up

- **Urethreal Warmer**
- Pneumatic pump (DVT prevention)
- Needle guidance system

Procedure

• Anesthesia equipment

MR guided Cryoablation Set-Up

Procedure

- Anesthesia equipment
- Specialized MRI coil (requires sterilization)

Treatment-related risks

• Broken cryoneedles can result in patient death

(testing the needle integrity prior to insertion essential)

- Bowel injury (poor use of MR-guidance for needle insertion)
- Injury to rectal walls or nerves (poor use of MR-monitoring of ice growth)
- Injury to urethra (failure of urethral warmer system)
- Infection at the cryoneedle insertion site
- Increased projectile risks (large team, frequent entry of personnel for correct needle adjustments, anesthesia process)
- Deep Vein Thrombosis (extended time inside MRI scanner >5hrs)

- -- Using stereotactic frame a burr hole is made
- -- Laser applicator is guided into the target lesion position
- -- Position of the applicator is confirmed with MRI scan

-- MR thermometry used to monitor test and treatment doses in real time

-- Gadolinium enhanced T1-weighted MRI to confirm appropriate extent of ablation

Treatment-related risks

Substandard treatment

 -rapid heating may lead to tissue charring at the applicator and prevent penetration of laser energy (need to monitor cooling of the applicator)
-inadequate MR-monitoring of thermal dose relative to lesion

Injury to non-target tissue

-inadequate MR-monitoring of thermal doe relative to lesion

- Infection at the applicator insertion site
- Anesthesia-associated risks
- Increased projectile risks (large team, frequent entry of personnel for correct needle adjustments, anesthesia process)

Thank You!

