MR Safety: Case Review of Real MRI Safety Incidents
Joel P. Felmlee, Ph.D.
AAPM Summer Meeting 2014

Outline
• MR Safety Considerations
 • \(B_0 \), \(dB/dt \), RF, Acoustic
 • Assessment strategy
• Case reviews
 • Shocked (or not?)!
 • Sacral stimulator (sans wires) - head/ spine
 • Chest expander
 • Tanked (a zone 3 phenomena!)
 • Cochlear implant
 • Stapes Implant

MRI Safety Considerations
• \(B_0 \)
• \(dB/dt \)
• RF
• Acoustic

• Can we simplify?
• When faced with a patient exam, how do we get started?

MRI Safety: Assessment Strategy
• Know what device is in your patient
 • Manufacturer
 • Model
 • Serial number (if possible)
• Does your patient have an information card?
• Talk to patient, care provider, manufacturer’s rep
• Look in medical notes
• Use internet for:
 • Information from the manufacturer
 • Search device name + “MRI safety”
 • Safety web sites
• Assess risk and benefit with Radiologist

MRI Safety: Assessment Strategy (2)
• Assess your device against MRI safety considerations
 • B0 (attractive force, torque)
 • dB/dt (peripheral nerve stimulation)
 • RF (heating)
 • Acoustic (Loudness)
• Which are relevant to your situation?
• Talk to technologist and Radiologist to assure everyone is understanding and in agreement
• Review plan with Radiologist and Technologist
• Oversee exam, if needed, at the scanner

When imaging devices within a patient in MRI, which of the following is the best first step?
17% 1. change the acquisition to normal mode to reduce dB/dt
13% 2. assess whether the device is affected by B0, dB/dt, RF
13% 3. conduct a search on the web to determine safety aspects of the device
43% 4. know exactly what is in your patient - investigate so that the exact device name, model, and serial number (if available) are known to you
13% 5. reduce the RF power (SAR)
Answer

- know exactly what is in your patient - investigate so that the exact device name, model, and serial number (if available) are known to you

- The above allows you to develop a plan

MRI Safety Case Review #1

- Physics contacted by MR technologist, patient reports feeling an electric shock during third series of an MRI exam
- Patient removed from 1.5 T MRI scanner
- Patient's vital signs monitored, unstable progression noted, and taken to emergency room
- Patient recovered, and returned for scanning at a later date

- Is this a B0, dB/dt, RF, or acoustic issue?

MRI Safety Case Review #1: What did we do?

- Physics reviewed imaging parameter settings with MR technologist
- Noted Patient issue developed during "T2w GRE"
 "T2w GRE" used EPI readout*
- MRI Scanner evaluated by service personnel
- Series repeated using same parameters, swapped phase and frequency axes, and Normal mode
- Discussed with Radiologist and with patient (via phone, after the fact)

* Things that make us think, ‘hmmm’
MRI Safety Case Review #1: What did we find?

• MRI Scanner evaluated by service personnel: RF and electric isolation, humidity
 • RF and isolation - No problem found (NPF)
 • Humidity – high, out of spec due to construction in adjacent room

• "T2 w GRE"
 • Very Low SAR*
 • EPI readout*

• Series repeated using same parameters, swapped phase and frequency axes, and Normal mode
 • Same parameters: Freq. encoding along Y*
 • Peripheral nerve stimulation (PNS) occurred*
 • No PNS in other acquisitions*

Discussed with Radiologist and with patient

Results so far:
 • Very Low SAR (not RF)
 • EPI readout (gradient dB/dt possible)
 • Significant sensations replicated, but not a “shock”

Patient was an Electrician and Electrical Engineer
 • Described: sensations start and stop with scan
 • Not electrostatic but patient’s context is important!

Determination: Peripheral Nerve Stimulation - PNS

Subsequent scans “successful" using Normal mode with frequency encoding along X (revised protocol)

When faced with a patient complaint of a “shocking” sensation during gradient intensive scans such as DWI or DTI imaging, which of the following is the most likely cause?

10% 1. B0, the static magnetic field induced eddy currents
13% 2. gradient dB/dt inducing peripheral nerve stimulation
20% 3. RF energy causing heating in tissue and devices
30% 4. acoustic energy causing a pressure wave in the magnet bore
27% 5. phosphine discharge due to static discharge
Answer

• gradient dB/dt inducing peripheral nerve stimulation
• The DWI and DTI scans are low SAR and high dB/dt making PNS a likely event.

MRI Safety Case Review #2 A

• Physics contacted by technologist
• Patient called one day prior to brain MRI
• Patient reports having sacral nerve stimulator that has had wires removed
• Patient requests discussion with physicist prior to exam
 • Expressed multiple concerns (Safety, anxiety)*
 • MRI important for care plan*

• Is this a B0, dB/dt, RF, or acoustic issue?

InterStim® Therapy for Urinary Control is indicated for the treatment of urinary retention and the symptoms of overactive bladder

• Neuromodulation sends electrical stimulation to the sacral nerve
• The sacral nerve, in particular, influences pelvic floor behavior and is believed to modulate neural reflexes

References:
RF issue

MRI Safety Case Review #2A : What did we find?

- RF issue associated with wires
- Patient had wires explanted, generator still in place
- Generator unaffected by B0
- Generator unused, dB/dt effects of battery depletion or programming issues not relevant
- Plan discussed with Radiologist and patient:
 - Normal imaging mode
 - Patient awake
 - Physicist on site to assess protocol
- Scanning completed successfully

MRI Safety Case Review #2 B

- After ~ 6 weeks, physicist contacted by same patient
 - Two days prior to spine MRI
 - Similar concerns as before
- Same imaging plan put in place
 - (Normal mode, physicist present)
- Upon arrival, patient reports having entire sacral nerve stimulator removed (no documentation)*
- Presence or absence of generator did not affect imaging plan
 - Image artifacts indicated presence of generator
- Imaging completed successfully
Which of the following is a concern in MRI when wires are known to be implanted within your patient?

- 30% B0, the static magnetic field causing attraction of ferromagnetic items
- 20% gradient dB/dt causing PNS
- 13% RF energy causing heating
- 12% loud acoustic noise levels
- 20% program changes in acute devices

Answer
• RF energy causing heating

Wires present a real risk of heating in MRI, at high current density points where the end of the wire contacts the patient.

MRI Safety Case Review #3 (Tanked!)
• A green oxygen tank found in zone 3 of MRI area after weekend call at busy hospital
Ferromagnetic tank was noted in zone 3, but not removed.

Weekend patient had brought and exchanged tank at MRI as their oxygen tank was low

We found that this is common practice

Makes ferromagnetic tank control within hospital very difficult

Elevated issue as process problem

Communicated to MR technologists via e-mail and “town hall” meeting

No injuries, identified a process gap and developed a staff education plan to address issue
Answer

• B₀, the static magnetic field causing attraction of ferromagnetic items

Deaths have occurred from ferromagnetic oxygen tanks entering zone 4. An area should be designated for storage of these devices outside of zone 3.

MRI Safety Case Review #4

• A patient with cochlear implant presents at MRI, with care plan to wrap the head to stabilize internal magnet

Is this a B₀, dB/dt, RF, or acoustic issue?

Reference: www.Cochlear.com

How does a cochlear implant affect MRI?

The internal implant contains a magnet, which helps the external sound processor or coil to place. When placed in an MRI scanner, this magnet can cause a shift or artifact on the medical image, which may hinder the doctor’s ability to make an accurate diagnosis of brain damage. As a result, imaging of the head is important consideration when choosing a cochlear implant.

A 3 Tesla MRI scan of a cochlear implant recipient with magnet in place. The yellow line represents implant placement. The implant is not placed in the head to make an accurate diagnosis.

A 3 Tesla MRI scan of a cochlear implant recipient with magnet removed. The yellow line represents implant placement. The implant in the image is not placed in the head to make an accurate diagnosis. Images courtesy of Cochlear International.
MRI Safety Case Review #4

- A patient with cochlear implant presents at MRI
- Care plan and artifacts discussed with Radiologist
 - A cochlear implant patient’s head was wrapped at the scanner prior to MRI - wrap maintains internal magnet position
- External electronics removed
 - SAR limited to safe levels (1 W/kg) • RF issue
 - dB/dt managed using Normal mode
- Imaging completed successfully

Which of the following is a concern in MRI when devices contacting electronic circuitry are known to be implanted within your patient?

27% 1. B0, the static magnetic field causing attraction of ferromagnetic items
13% 2. gradient dB/dt causing PNS
20% 3. RF energy causing heating
17% 4. loud acoustic noise levels
23% 5. program changes in active devices

Answer

- RF energy causing heating

In this case B0 aspects were managed. Gradient induced programming changes are not known to be a problem for this device at this time.
MRI Safety Case Review #5 (Stapes)

- A patient presented with a stapes implant
- Specifics (patient verbal – titanium, had previous MRI)
- Literature and safety web sites show a few implants as unsafe
- One radiologists scanned successfully
- Two radiologists did not scan this patient
- Request for information from surgeon, was inconclusive
- What to do?

 Is this a B0, dB/dt, RF, or acoustic issue?

Ferromagnetic Detection

- Ferromagnetic materials perturb the local magnetic field.
- Field perturbations follow the object as it moves.
- A high sensitivity magnetic gradiometer senses the environmental field gradient.
- Ferroguard is sensitive only to changing magnetic field gradients.
- A moving field perturbation triggers a visual/audible alarm.

Slide provided by Metrasens

MRI Safety Case Review #5 (Stapes)

- Ferromagnetic detection was positive, suggesting ferromagnetic metal in the head
- Exact device and history remains unknown
- Future scanning considerations are currently the discretion of Radiologist
- This remains an ongoing investigation…
Summary

• Know basic safety principles (B0, dB/dt, RF)
• Communication is key
 • How many of these situations began with call from technologist?
 • Realize patient anxiety may be beyond exam and related to their disease and ultimately affect their communications
 • Critical thinking and discussion with Radiologist is an expected part of our role on the care team

References

• Vendor websites:
 • www.Medtronic.com
 • http://www.cochlear.com
 • https://www.uwhealth.org