

Medical Physics 2.0 Ultrasound 2.0

N. J. Hangiandreou, Ph.D.¹ P. L. Carson, Ph.D.² Z. F. Lu, Ph.D.³

¹ Mayo Clinic
 ² University of Michigan
 ³ University of Chicago

Overview

- Ultrasound Perspectives (Paul Carson, PhD)
- Ultrasound 1.0 (Zheng Feng Lu, PhD)
- Ultrasound 2.0: How will *clinical* medical physics support future ultrasound practices?
 - Performance testing
 - Optimization of image quality and exam protocols
 - Clinical innovation
 - Education of physicians, sonographers, residents, medical students, patients
- Clinical implementation

Role of ultrasound in future clinical imaging practices

- Strengths of ultrasound: image quality, Doppler modes, real-time, portable, safety record, low cost
 - \rightarrow Very wide range of clinical applications
 - adjunct to physical exam, vascular access for interventional radiology procedures, screening, primary diagnosis, guidance of biopsy & fluid aspiration, guidance of ablation (e.g. RF, ETOH), thermal ablation (MRgFUS, HIFU), facilitate soft tissue healing, targeted drug delivery

Role of ultrasound in future clinical imaging practices

 Who is using ultrasound? Radiology, Cardiology, Anesthesiology, Obstetrics & Gynecology, Urology, Gastroenterology & Hepatology, Hospital Internal Medicine, ...

• The future...

- Continued expansion in clinical applications and exam volumes is expected
- Increased diversification in user base?

Ultrasound Perspectives PL Carson, PhD

1. Perspectives from the past and present

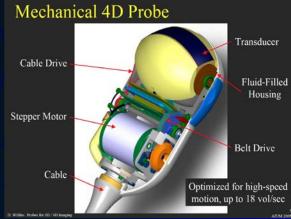
- 1. Innovations in newer current medical ultrasound systems
- 2. Physics successes and failures

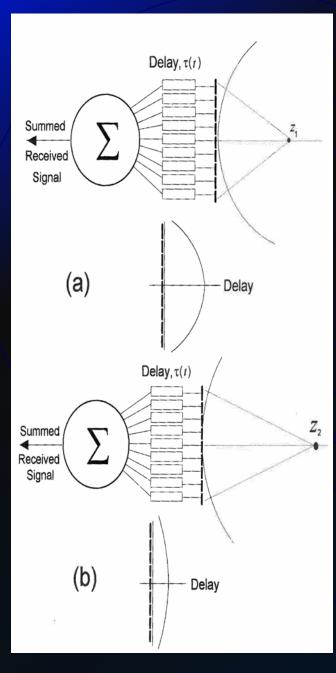
2. A perspective, from the more distant future, of potential use in shaping planning by medical physics

- 1. Ubiquitous in personal experience e- personal tricorders
- 2. Power, readout and internal processing of neural and other implants
- 3. Localized drug delivery and activation
- 4. Resolving of deep, even transcranial, 200 micron vessels
- 5. Medical physicists' opportunities

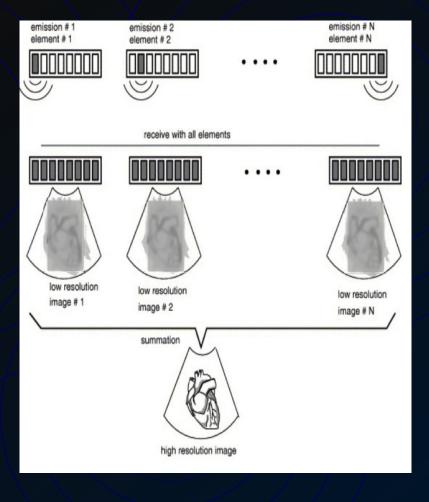
Innovations in newer current systems

1. Software beam formers
2. Shear wave speed imaging (elastography)

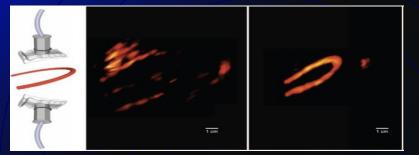



• 3. 4D color flow contrast and non-contrast imaging

D Wildes.

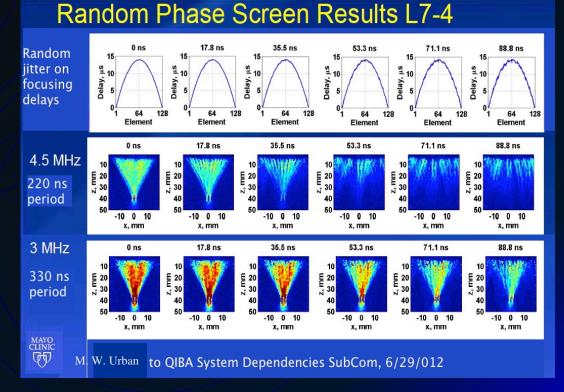

AIUM 05

4. Aberration correction

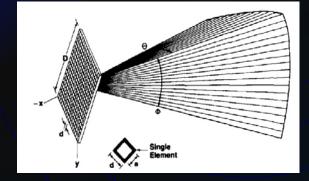

Synthetic aperture imaging

Adapted from Cobbold, Foundations of Biomedical Ultrasound, Oxford Press, 2007, p 34.

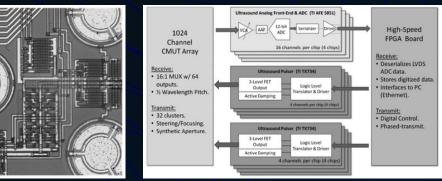
← JA Jensen, et al., Ultrasonics, Suppl. 2006, pp e5ff.



Lindsey & Smith, "Pitch-catch phase aberration correction of multiple isoplanatic patches for 3-D transcranial US," IEEE TUFFC, 60, 463, 2013 (Ultras. Imaging, Jan: 35-54, 2014).


Aberration correction

Beam pretty good up to rms phase noise of 0.1τ



Perspective from the more distant future

Smith, S.W., et al., IEEE Trans,. Ultras. Ferroel. Freq. Contr., 38, 1991, 100-108 Lemmerhirt, D., et al., A 32 x 32 capacitive micromachined ultrasonic transducer array manufactured in standard CMOS. *IEEE Trans. Ultras, Ferroel. Freq. Contr.*, 59, 1521-1536, 2012

- I. High end medical future
 - a. Full 2D arrays evolution is here ...electronic 4D imaging
 - b. Aberration correction
 - c. Super resolution

II. High performance US simple in the future, thus ubiquitous

III. Medical physicists can serve broad spectrum of society

Ultrasound 1.0 ZF Lu, PhD

1. System performance

- Introduction
- Ultrasound phantoms
- Ultrasound image quality metrics
- 2. System implementation
- Efficacy and sensitivity of current ultrasound QA/QC
- 3. Testing paradigm
- Survey of voluntary ultrasound accreditation programs
- Survey of available standards for diagnostic ultrasound

Various Levels of QC Testing

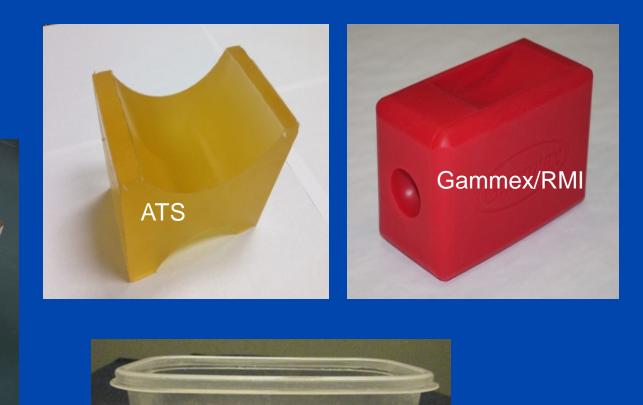
	Testing Time and Methods	Testing Frequency	Testing Personnel
Level 1	 Quick check; no special tool needed; 	Daily or weekly or monthly	By ultrasound system users and overseen by medical physicists
Level 2	Quick QC tests with a simple phantom;	Quarterly or semi-annually	By ultrasound system users and overseen by medical physicists
Level 3	Comprehensive QC tests with phantoms;	Annual or every two years	By medical physicists

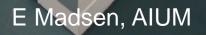
Ultrasound Phantoms

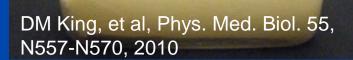
Tissue-mimicking

- Speed of sound propagation
- Attenuation coefficient
- Backscatter coefficient (echogenicity)
- Built-in targets
- Ultrasound elastography properties

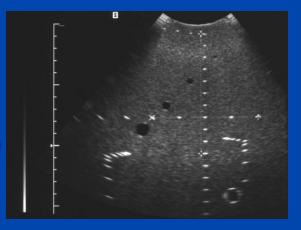
Water-based versus rubber-based

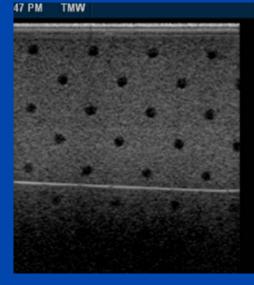

- Caution about phantom desiccation
- Caution about sound speed effect





More Ultrasound Phantoms

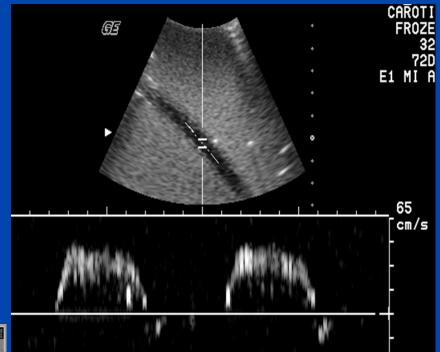



Current Image Quality Metrics

B-Mode

- Image geometry
- Maximum depth of penetration (system sensitivity)
- Image uniformity and artifact survey
- Ring down
- Lesion detectability with a spherical lesion phantom
- Spatial resolution (axial, lateral, elevational)
- Contrast resolution

Common approaches are mainly visual & qualitative



Current Image Quality Metrics

Doppler Ultrasound

- Doppler signal sensitivity
- Doppler angle accuracy
- Color display and gray-scale image congruency
- Flow read-out accuracy

Scanner and PACS Displays

Common approaches are mainly visual & qualitative

1. System performance

- Introduction
- Ultrasound phantoms
- Ultrasound image quality metrics
- 2. System implementation
 - Efficacy and sensitivity of current ultrasound QA/QC *Reports in literature draw mixed conclusions*

3. Testing paradigm

- Survey of voluntary ultrasound accreditation programs AIUM, ACR
- Survey of available standards for diagnostic ultrasound

- Image quality metrics and assessment methodology
 - Further development of quantitative software analysis tools and test protocols is needed
 - Traditional performance metrics
 - New performance metrics (elastography, QUS)
 - Validation of methods
 - Signal accuracy/sensitivity and precision
 - Automated or semi-automated tools \rightarrow repeatability
 - Real-time workflow
 - Wide availability

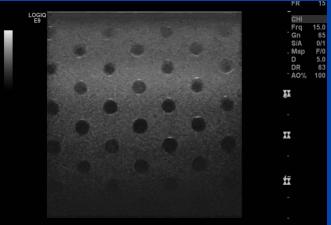
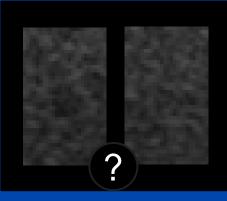

Phantom vendors

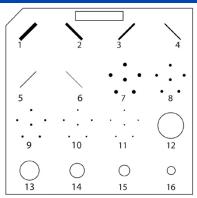
 Image quality metrics and assessment methodology


- Task-specific performance measures based on detection or characterization of phantom targets
 → more integrated and clinically-relevant quality measures
 - Contrast-detail analysis
 - Target signal-to-noise ratio
 - Resolution integral



• Image quality metrics and assessment methodology: *Task-specific measures*

- Phantoms and targets
 - Anechoic and echogenic cylinders
 - Anechoic spheres
- Observers
 - Human (ROC, 2AFC tasks)
 - Computer (matched filter, model observers, target segmentation)



• Image quality metrics and assessment methodology: *Task-specific measures*

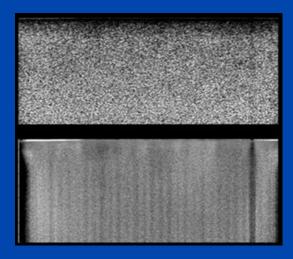
- Challenges include...
 - Statistical requirements
 - Many independent target images
 - Assumptions about the imaging system (Linear? Shift-invariant? Gaussian noise?)
 - Testing the system, not the operator
 - Phantoms that can accommodate all modern imaging equipment, and model a wide variety of clinical applications
 - Testing paradigms reflecting wider variety of clinical tasks

• Testing scenarios – Why do we test?

Purpose	Frequency	Methods	Personnel
		Most comprehensive, objective,	
		quantititative, clinically-relevent,	
Technology assessment /		robust vs basic control settings	Physicist
Pre-purchase testing	Ad hoc	+ acceptance tests	& physics assistant
		Objective traditional performance	
		Objective, traditional performance	Dhuaian anaisteat
	At clinical	measures (DOP, Uni, Geo, Spatial res,	
Acceptance testing	implementation	Contrast, Display, etc) + connectivity	& physicist
			Physics assistant
Re/application for	As specified by	As specified by accrediting body	with physicist support
practice accreditation	accrediting body	(subset of acceptance tests)	and oversight
		On-board vendor diagnostics	
Routine QC		- Auto data logging, problem alert	Service group to
(Testing levels 1 & 2)	Daily	- Practice specification of alert levels	respond to alerts
	Daliy	- Fractice specification of alert levels	
	Same as for accred.,		
Comprehensive physics	or as appropriate		Physics assistant
survey	for the specific US	Same as acceptance or accreditation	with physicist support
(Testing level 3)	system	testing	and oversight

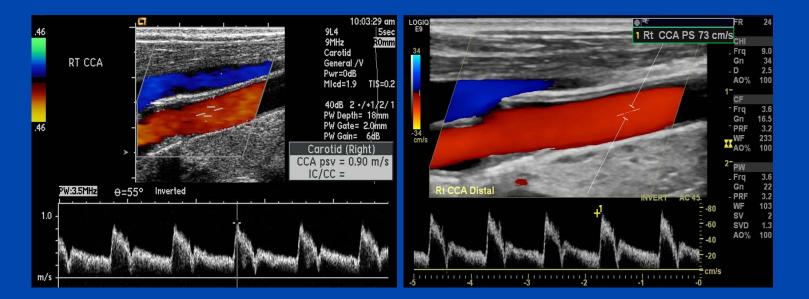
Testing scenarios

- Technology assessment / pre-purchase testing
 - Most comprehensive level of system evaluation
 - Extensive physics/phantom testing, with quantitative methods, even at expense of efficiency
 - Volunteer imaging, categorical data
 - Patient imaging, categorical data
 - Connectivity and workflow
 - Usability, service-ability, etc



Testing scenarios

- Accreditation and regulatory compliance
 - Acceptance testing
 - Comprehensive physics survey
 - Routine quality control
 - Challenge: clinically-relevant performance benchmarks
 - What defines acceptable and unacceptable performance?
 - What quality and risk factors should be considered?



Role of physics in future ultrasound practices Optimization of image quality & exam protocols

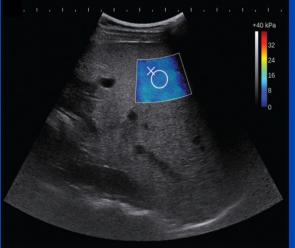
Quantitative measurements

- Limited vendor guidance re use of measurement tools
- Normalize measurement calibration across ultrasound system models, probes, and vendors

Role of physics in future ultrasound practices Optimization of image quality & exam protocols

Standardized dx exam protocols & imaging presets

- Sharing clinical diagnostic work across geographicallydistributed practices, and
- A variety of US systems and vendors
- Vendors: remote system management tools?



Role of physics in future ultrasound practices Clinical innovation

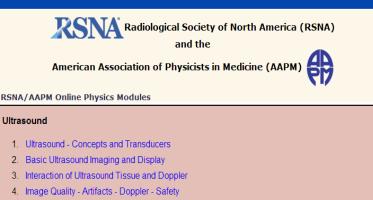
Assessment and implementation of new ultrasound technologies

 Developing initial exam protocols, imaging presets, and measurement protocols, for new modes and features

Greater use of image measurements & metadata

- Practice resource utilization and management
- Quality improvement of imaging presets
- Enhanced exam interpretation modes and clinical result sets
- Improved practice efficiency

General improvement of overall practice quality & safety, not just image quality


Role of physics in future ultrasound practices Education

- Physicians, sonographers/technologists residents, medical students, patients
- Physics and technology of ultrasound imaging systems
 - Board certification

MAYO

- Sub/specialty certifications
- Practical knowledge to improve the quality of exam interpretations

What knowledge is really needed by practitioners?

Clinical implementation Partner with the clinical practice

• The problem:

An enormous amount of clinical equipment, wide range of technology sophistication, implemented across multiple departments with different practice workflows, inconsistent training and education, *increasing financial pressures*, and limited technical support historically

Clinical implementation Build and lead a technical support team

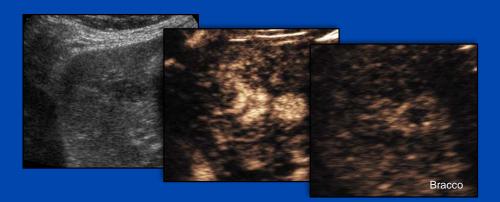
• The team:

- Physician practice leader
- Practice manager
- Sonographer/tech manager, lead, educator
- Service engineer
- Physics assistant
- Physicist
- Vendor product team (key partners, not leaders)

- Performance testing
- Optimization of image quality and exam protocols
- Clinical innovation in all aspects of practice
- Education

Clinical implementation Continuous quality improvement

- Evidence-based performance testing program, that emphasizes actual value (risk/cost)
 - Expand the technology assessment protocol to address new functionality
 - Assess utility for annual performance surveys and routine QC on a small scale
 - Optimize routine QC methods
 - Optimize the routine testing program in response to technology level, clinical application, prior data, & technology advancement
 - What tests, methods, personnel, and frequency optimize actual value for the clinical practice?



Conclusion

- Ultrasound use is expected to grow rapidly
- Ultrasound imaging systems are undergoing rapid development and innovation
 - New sources of image contrast
 - Improved quantitation
 - Improved metadata and practice analytics

Conclusion

- Medical physicists working in partnership with clinical practices will be critical to optimizing practice quality, safety & value
 - Performance testing
 - Optimization of image quality and exam protocols
 - Clinical innovation in all aspects of practice
 - Education
- Demonstrating the value of physics services will become increasingly important

