Overview of IMRT and Arc-Based Techniques

David Shepard AAPM Annual Meeting - Austin July 21, 2014

SWEDISH CANCER INSTITUTE

The Beginnings of IMRT

- Brahme, A., J.E. Roos, and I. Lax (1982), "Solution of an integral equation encountered in rotational therapy." Phys. Med. Biol. 27:1221-1229.
- Brahme, A. (1988). "Optimization of stationary and moving beam radiation therapy techniques." Radioth. Oncol. 12:129-140.

IMRT

 IMRT is characterized by highly conformal dose distributions achieved by delivering non-uniform intensity patterns determined using inverse planning.

IMRT Delivery Techniques

- Compensators
- Step-and-shoot Fixed field •
- **Sliding Window**

Rotational

Tomotherapy •

•

- IMAT

🕣 SWEDISH CANCER INSTITUTE

IMRT Delivery Techniques

- Compensators
- Step-and-shoot •
 - **Sliding Window**
- Tomotherapy •
- IMAT •

٠

Rotational

Fixed field

Compensators

 A separate compensator is milled for each beam direction to provide optimized fluence map.
The compensator thickness varies in two-dimensions to provide differential

attenuation.

Early Clinical Example

- · Squamous cell carcinoma of the oral pharynx
- Planning goals:
 - Primary target: 70 Gy to 95%

USA · Europe

- Spinal cord: < 50 Gy</p>
- Patient is in extreme pain; treatment time must be as short as possible
- Plan selection:
 - 5 beams
 - Treatment time
 - 7.0 min for compensator-modulation

China
 Japan
 Aus

- 19.3 min for MLC-modulation (may vary; dependent on MLC vendor)
- Compensator modulation was chosen due to short treatment time.

Compensators - Advantages

- · No MLC required
- No field splitting (full 40x40cm fields)
- · Works well with gated beam delivery

SWEDISH CANCER INSTITUTE

SWEDISH CANCER INSTITUTE

Compensators - Disadvantages

- · Production is labor intensive and time consuming.
- Therapists must enter room and change the compensator for each field of the treatment.
- It is difficult to obtain high spatial variation in an intensity pattern.
- Compensators are a source of unwanted scatter.
- Beam hardening effects and scattered photons must be accounted for in the dose calculation.

Step-and-shoot

- Multiple beam segments (apertures) delivered from each beam angle.
- · The radiation is turned off between segments.

Step and Shoot

Step-and-Shoot - Advantages

• No radiation delivered while MLC is moving.

Step-and-Shoot - Disadvantages

• Can be time consuming if a large number of segments are used.

SWEDISH CANCER INSTITUTE

Dynamic MLC (Sliding Window)

- Each leaf pair of the MLC are moved independently but unidirectionally across the treatment field while the beam is on, effectively sweeping apertures of variable width across the field.
- Pairs of MLC leaves are in continuous movement across the field with the intensity at a point equal to the total exposure time of the leaf pair above it.

Courtesy of Rock Mackie

Sliding Window - Advantages

• Does not suffer from intersegment delay time.

Sliding Window - Disadvantages

- Increased wear and tear on MLC.
- More difficult to correctly predict dose.

SWEDISH CANCER INSTITUTE

Automated Non-Coplanar Delivery

- Researchers are exploring the dosimetric benefits of using large numbers of non-coplanar beams.
- This would require the development:
 - Comprehensive optimization tools including beam angle selection
 - Sophisticated collision prediction and detection algorithms
 - Automated delivery tools

Dosimetric comparison for a liver SBRT treatment

Dong, P., P. Lee, R. Dan, T. Long, E. Romeijn, Y. Yang, D. Low, P. Kupelian, and K. Sheng", 4pi Non-Coplanar Liver SBRT: A Novel Delivery Technique. Int J Radiat Oncol Biol Phys, 2013. 85(5): p. 1360-1366.

Courtesy of Ke Sheng

3D isodose cloud comparison between non-coplanar and coplanar plans

Courtesy of Ke Sheng

Lung SBRT

Implementation

- Delivery is being tested on a Varian TrueBeam
- Automated beam delivery:
 - Most 4π plans have >20 beams
 - Most beams required different couch angles
 - Couch translation also required

Courtesy of Ke Sheng

Automated 4p delivery 3D Virtual Model 4pi Robotic Radiotherapy Radiation Oncology, UCLA

6x speed playback, delivery time <10 minutes

Courtesy of Ke Sheng

SWEDISH CANCER INSTITUTE

IMRT Delivery Techniques

- Compensators
- Step-and-shoot
 - Sliding Window
- Tomotherapy
- Potati
- IMAT

Fixed field

Why rotational delivery?

C-shaped Target Simulations

# Angles	Obj. Funct. Value	Std. Dev. in target dose	d ₉₅	Mean dose to RAR	Total integral dose
3	0.665	0.124	0.747	0.488	2732.5
5	0.318	0.090	0.814	0.215	2563.3
7	0.242	0.064	0.867	0.206	2596.8
9	0.222	0.064	0.855	0.192	2598.3
11	0.202	0.058	0.879	0.186	2570.2
15	0.187	0.053	0.908	0.180	2542.9
21	0.176	0.049	0.912	0.171	2545.1
33	0.151	0.038	0.933	0.155	2543.5

Courtesy of Accuray Inc.

- T. Rock Mackie Department of Medical Physics and Human Oncology. University of Wisconsin, Madison, Wisconsin
- Timothy Holmes and Stuart Swerdloff Department of Medical Physics, University of Wisconsin, Madison, Wisconsin
- Paul Reckwerdt and Joseph O. Deasy Department of Medical Physics and Human Oncology. University of Wisconsin, Madison, Wisc
- James Yang Department of Medical Physics, University of Wisconsin, Madison, Wisconsin
- Department of Medical Physics and Human Oncology, University of Wisconsin, Madison, Wisconsin Department of Medical Physics and Human Oncology, University of Wisconsin, Madison, Wisconsin
- Timothy Kinsella Department of Human Oncology, University of Wisconsin, Maditon, Wisconsin (Received 20 July 1992; accepted for publication 14 June 1993)

Tomotherapy

- Intensity modulated delivery using a fan beam.
- · Can be delivered in either a serial or a helical fashion.

Serial Tomotherapy

Add on binary MLC introduced by NOMOS in 1994. .

Courtesy Walter Grant

Serial Tomotherapy

- The leaves of the binary MLC open and close as the gantry rotates.
- Two slices are treated during each rotation.
- · Couch must be indexed between rotations.
- In early years of IMRT, more patients were treated with serial tomotherapy than any other technology.

MIMiC

Multileaf Intensity Modulating Collimator

NOMOS MIMiC Delivery

Serial Tomotherapy - Advantages

• Tight dose conformity provided by rotational IMRT delivery.

Serial Tomotherapy - Disadvantages

- Need to purchase add on MLC.
- Very sensitive to accurate couch translation.

Helical Tomotherapy

• Dedicated treatment unit using a rotating fan beam of radiation and a binary MLC.

Helical Tomotherapy

- 2002 1st patient treated at the University of Wisconsin
- 2014 500th system installed

Helical Tomotherapy

- In-line linac mounted on CT-style gantry
- Fan beam (up to 40cm wide) is divided into 64 "beamlets" by the binary multileaf collimator
- · Helical delivery using 6 MV beam
- MV fan-beam CT scanning

Treatment Geometry Overview Helical Delivery

- Couch travels continuously in the superior direction.
- Gantry rotates at a constant rate.

Prostate Treatment - Movie

Tomotherapy Treatments

Tanaftanay

SWEDISH CANCER INSTITUTE Extraordinary care. Extraordin

Additional Tools

- <u>TomoDirect</u> Deliver 3DCRT or IMRT with fixed beam angle delivery.
- <u>Dynamic Jaws</u> running start and stop provides improved dose conformity and in some cases will allow users to select a wider jaw setting leading to a more efficient delivery.

Helical 3D Breast Boost – Comparison of 5 cm Dynamic Jaw vs. 2.5 cm Static Jaw for 14 Gy Boost

Dynamic Helical IMRT vs Fixed Jaw Helical IMRT

SWEDISH CANCER INSTITUTE Extraordinary care. Extraordir

Helical IMRT - Advantages

- Delivery to entire volume in one continuous field
- Overlapping helical strips provide for high degree of modulation
- Rotational delivery provides highly conformal Tx plans
- System fits in low-energy vaults

Helical IMRT - Disadvantages

- · Need to purchase dedicated treatment system
- Non-coplanar delivery is not an option
- Respiratory gating is challenging

Intensity-modulated arc therapy with dynamic multileaf collimation: an alternative to tomotherapy

C X Yu 1995 Phys. Med. Biol. 40 1435-1449 doi:10.1088/0031-9155/40/9/004

SWEDISH CANCER INSTITUTE Extraordinary care. Extraordin

IMAT: 1995-2007

- Over this time, the IMAT delivery technique largely withered on the vine.
- Linac manufacturers did not have control systems capable of delivering IMAT.
- No treatment planning system had robust inverse planning tools for IMAT.

Extraordinary care. Extraordinary carir

IMAT: 2008-Today

- Elekta and Varian introduced control systems that are capable of delivering IMAT.
- Key innovation is that the dose rate, gantry speed, and MLC leaf positions can be changed dynamically during rotational beam delivery.
- The term VMAT has been adopted.

SWEDISH CANCER INSTITUTE Extraordinary care, Extraordin

IMAT Basics

- An arced-based approach to IMRT that can be delivered on a conventional linear accelerator with a conventional MLC.
- During each arc, the leaves of the MLC move continuously as the gantry rotates.
- The degree of intensity modulation is related to the number of beam shapes per arc and the number of arcs.

IMAT Delivery

From Cedric Yu

Extraordinary care. Extraordinary caring

Efforts to Revive Interest in IMAT University of Maryland School of Medicine

- We developed tools for delivering rotational IMRT on a Elekta SL20 linac.
- Conducted a clinical trial to demonstrate that IMAT could be delivered safely and accurately on a conventional linac.

SWEDISH CANCER INSTITUTE

•

SWEDISH CANCER INSTITUTE

2000 - Phase I Clinical Trial University of Maryland School of Medicine

- 50 patient trial using IMAT delivered under an IRB protocol.
- Two key limitations were:
 - 1. Constant dose rate during rotation
 - 2. No inverse planning solution

Example 1 - Prostate

- Two sets of bilateral arcs.
- 1 set of arcs matches BEV of prostate.
- 1 matches BEV of prostate rectum.
- Weights of arcs are optimized.

🕣 SWEDISH

CANCER INSTITUTE

Example 2: Spinal Ependymoma

5 arc treatments

SWEDISH CANCER INSTITUTE Extraordinary care. Extraordin

IMAT - Initial Experience

- 50 patients were treated in this trial: central nervous system (17 patients), head and neck (25 patients) and prostate (8 patients).
- Average treatment time was 7.5 minutes. ٠
- Demonstrated IMAT is an efficient approach to • delivering rotational IMRT.

IMAT - Forward Planning

- Dosimetrists used iterative trial-and-error approach to determine starting and stopping angles, the beam shapes, and beam weights.
- Planning was time consuming.
- No guarantee that a plan was close to optimal.

Inverse Planning for IMAT

- The complex nature of IMAT treatment planning has was a primary barrier to routine clinical implementation of IMAT.
- From one angle to the next in each IMAT arc, one must account for the interconnectedness of the beam shapes.

Interconnectedness of Beam Shapes

- Leaf motion between adjacent angles is limited by leaf travel speed and gantry rotation speed.
- For example, if the gantry speed is 10 degree/sec and the leaf travel speed is 3 cm/sec, then the maximum leaf travel distance between two adjacent angles is 3 cm.

IMAT Treatment Planning

- We developed two IMAT inverse planning approaches:
 - 1. Direct Aperture Optimization for IMAT (2003).
 - 2. An "arc-sequencing" algorithm (2006).

COMPARISON OF PLAN QUALITY PROVIDED BY INTENSITY-MODULATED ARC THERAPY AND HELICAL TOMOTHERAPY

DALIANG CAO, PH.D.,* TIMOTHY W. HOLMES, PH.D.,* MUHAMMAD K. N. AFGHAN, PH.D.,* AND DAVID M. SHEPARD, PH.D.*

*Seedisk Carcer Ionizas, Soutis, WA; and "Department of Ratiation Occolegy, St. Agnes Hospital, Bahnson, MD. Pergeng Informity-mediaties of netrogen (MMT) is not ache should appreade historites): mediaties of individual statistics. (SWT) that can be deforted in a consortantial Baior acceleration wing a concentration MMD of SWT. The SWT is a stress of the statistic of the stress of the str

Intensity-modulated arc therapy, IMAT, Tomotherapy, Intensity-modulated radiotherapy, IMRT, Arc sequencing, Inverse planning,

IMAT vs. Tomotherapy Plan Comparison

- Dr. Tim Holmes from St. Agnes Hospital in Baltimore provides us with 10 tomotherapy treatment plans.
- Plan comparisons were made between IMAT and tomotherapy.

H&N Example

SWEDISH CANCER INSTITUTE Extraordinary care. Extraordir

Results of Initial Comparison Study

- This study showed the IMAT can provide similar plan quality as helical tomotherapy for a range of clinical cases.
- At this point, no delivery control system existed capable of delivering these IMAT plans.

IMAT Commercial Introduction

- In 2008, Elekta and Varian introduced control . systems that are capable of delivering IMAT.
- Key innovation is that the dose rate, gantry • speed, and MLC leaf positions can be changed dynamically during rotational beam delivery.
- The term VMAT was coined by Karl Otto and became widely adopted.

Volumetric modulated arc therapy: IMRT in a single gantry arc Karl Otto⁸⁾ Vancouver Cancer Centre, BC Cancer Agency, Vancouver, British Columbia V5Z 4E6, Canada

(Received 25 June 2007; revised 21 September 2007; accepted for publication 5 November 2007; published 26 December 2007)

published 26 December 2007) In this work a novel plan optimization platform is presented where treatment is delivered efficiently and accurately in a single dynamically modulated arc. Improvements in patient care achieved frough image-public dynamical and plan adaptation have resulted in an increase in overall treat-ment times. Intensity-modulated radiation therapy (IMRT) has also increased treatment time by requiring a larger number of beam directions, increased anonize units (MU), and, in the case of tomotherapy, a sloc-by-side delivery. In order to maintain a similar level of patient throughput is will be necessary to increase the efficiency of treatment delivery. The solution proposed here is a novel aperture-based algorithm for treatment plan optimization where dose is delivered during a single gantry are of up 160 dogs. The techniques is similar to tomotherapy in that a full 36 dog of beam directions are available for optimization but is fundamentally different in that he entire dose volume is delivered in a single source rotation. Then we technique is referred to as you tomenterion modulated are therapy (VMAT). Multilad collimator (MLC) leaf motion and number of MU per

New Study: VMAT vs. Tomotherapy

- Collaborative study between Swedish Cancer • Institute and University of Virginia.
- 6 prostate, 6 head-and-neck, and 6 lung • cases were selected for this study.
- Fixed field IMRT, VMAT, and Tomotherapy • were compared in terms of plan quality, delivery time, and delivery accuracy.

SWEDISH CANCER INSTITUTE Extraordinary care. Extraordir

Head & Neck Case #1 nothera rc VMA

• Two targets with prescription levels of 5040 and 4500 cGy

SWEDISH CANCER INSTITUTE Extraordinary care. Extraordin

H&N Example #2

- : 2 arcs, 512 monitor units Deliver time = 4 minutes 7 seconds

H&N Example #2

H&N Example #3

VMAT Plan

IMAT/VMAT - Advantages

- Highly efficient delivery approx. 1.5 minutes per arc
 Strong dose shaping capabilities

IMAT/VMAT - Disadvantages

· Interconnectedness of beam shapes from one beam angle to the next.

When does IMRT beat VMAT?

Picture from: aniboom.com

SWEDISH CANCER INSTITUTE Extraordinary care. Extraordin

Fixed Field IMRT-VS-VMAT

	Step-N-Shoot IMRT	VMAT
Delivery Efficiency	Slow 😕	Fast 🙂
MU efficiency	Low 🙁	High 🙂
Planning Time?	Short 🙂	Long 😕
Constraints	Fewer 😊	More 😕

VMAT/Fixed Field IMRT Comparison

- We prospectively tested fixed field IMRT and VMAT plan quality on 100 consecutive IMRT patients.
- The physician selected the plan that he/she felt was most appropriate for the individual patient based on plan quality and delivery efficiency.
- In 95 out of 100 cases, the VMAT plan was selected.

Partial Brain: Fixed Field Selected

IMRT: 6 fields (one couch kick)

83

84

IMRT plan has lower dose in brain stem and chiasm.

Partial Brain: Fixed Field Selected

Sagittal View

IMRT: 6 fields (one couch kick) VMAT (Single-arc: no couch kick)

IMRT plan spares more brain stem and chiasm.

Mesothelioma: Fixed Field Selected

IMRT plan provided better conformality perhaps due to higher degree of intensity modulation.

Summary

- All IMRT delivery techniques provide highly conformal dose distributions.
- With each, a balance must be struck between plan quality and delivery efficiency.
- As technology evolves, views on which technique is the best choice will continues to change.

CANCER INSTITUTE Extraordinary care. Extraordinary caring

Factors that Impact VMAT Quality

- 1. More gantry angles → large volume being irradiated to low dose
- 2. Segment shapes are connected → limited Leaf motion → limited modulation
- Gantry continuous moving→ limited modulation at good angles

VMAT = more uniform target dose. IMRT = smaller low dose volume.

IMAT Advantages

- The rotational nature of IMAT delivery provides additional flexibility in shaping the dose distribution.
- IMAT is an efficient delivery technique due to the continuous nature of the delivery.

Direct Aperture Optimization (DAO)

- The number apertures per beam angle is specified in the prescription.
- All of the MLC delivery constraints are included in the optimization.
- The optimized plan is ready for delivery (no leaf sequencing).
- Can be used for both step-and-shoot and IMAT planning.

Cylindrical phantom delivery

PlannedDeliveredImage: DeliveredImage: Delivered

SWEDISH CANCER INSTITUTE Extraordinary care. Extraordin

Arc Sequencer

- Algorithm that converts optimized fluence maps into deliverable IMAT plans:
 - A step-and-shoot treatment plan is created in the Pinnacle³ TPS with beams separated by 10 degrees.
 - 2. The optimized intensity maps are extracted and sent to our arc-sequencing algorithm.
 - The sequencer produces an IMAT plan that is read back into Pinnacle³ for a final dose calculation.

Treatment Geometry Overview Projections, Beamlets, and Rays

• 51 projections (beam delivery angles) per rotation

- The Treatment Planning System (TPS) assumes that radiation is delivered from 51 discrete angles centered on each projection.
- Actual gantry rotation is continuous.
- 64 beamlets per projection (one for each MLC leaf).
 - A single gantry rotation has $51 \times 64 = 3,264$ beamlets.
 - A treatment with 30 rotations would have 97,920 beamlets.
 - The MLC is binary; each leaf is either fully open or fully closed.
 - However, individual leaf open times vary within a projection, allowing for many intensity levels across the radiation field.

· Coverage of a target extent up to 160 cm in length with no matching

🕣 SWEDISH CANCER INSTITUTE

Helical Delivery Fusion of a Linear Accelerator and a Helical CT Scanner

Swedishcancer instreatment Geometry Overview:

S Minimal Bunker Requirements

CT size footprint 22'-6.7m(d) x-19'-5.8m(w) x 9'-2.74m(h) with no couch pit required Only offm average shielding required Existing 600c vaults generally sufficient No chilled water supply – helps save on long term maintenance costs 30 day typical install of pre commissioned

machine

Under the Covers rapy Gun Board Linac Control -1.01 Magnetron Network and Modulator Data Acquisition System h High Voltage Power Supply Detecto 18 m

Helical Tomotherapy

• Dedicated treatment unit using a rotating fan beam of radiation and a binary MLC.

Custom Compensators

- A separate compensator is milled for each beam direction to provide optimized fluence map.
- The compensator thickness varies in two-dimensions to provide differential attenuation.

From Cedric Yu

- Compensator-based Beam Modulation uses precisely fabricated metal slabs with varying thickness.
- The metal thickness determines how much radiation gets through each small beamlet, and therefore creates the intensity pattern.

Advantages of Compensator-Based IMRT

Painting with a "finer" paint brush...

Inverse planning for intensity modulated arc therapy using direct aperture optimization

M A Earl, D M Shepard, S Naqvi, X A Li and C X Yu

Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA

Swedish CANCER INSTITUTE OMOS Corvus System

Isodose

- ♦Green 66 Gy
- ◆Light Blue 60 Gy
- ♦Red 54 Gy
- ♦Blue 45 Gy

Structures

- ♦Orange Parotid
- ♦Red PTV66
- ♦Green PTV60
- ◆Blue PTV54
- Purple PTV60 nodes

Acknowledgments

- Thomas Bortfeld
- . Martijn Engelsman
- . Alexei Trofimov
- . Lei Dong
- Daniel Ollendorf •
- Daniel Lessler •

SWEDISH CANCER INSTITUTE Extraordinary care. Extraordin

Types of IMRT Delivery

- Custom Compensators
- Step-and shoot
- Dynamic MLC (sliding window)
- Intensity Modulated Arc Therapy (IMAT)
- Tomotherapy > Serial Tomotherapy (NOMOS Peacock™) > Helical Tomotherapy
- Robotic Pencil Beam IMRT Delivery

Advantages of Compensator-Based IMRT

- Inverse planning with compensator-based modulation can
- transform ANY linear accelerator into an IMRT machine • Therefore, almost all clinics already have the hardware to deliver IMRT
- · Compensator-based IMRT requires fewer total monitor units
 - · Less than half the MUs required for MLC based IMRT
 - Less treatment time, compared to MLC
 - Important for patients in pain

ISA • Europe • China • Japan

- Each compensator can be visually inspected to ensure
- proper placement in the beam
- Hands-on "sanity checks"

Advantages of Compensator-Based IMRT

- Shielding is not required if Brass filters are used as adequate shielding is provided by the filter.
- "Unlimited" Field size. Up to max collimator settings on Linac
 - · No need for Head and Neck junctions
 - · No issues with jaw over travel
 - No field splitting
- Compensator-based IMRT is better when treatments are "gated" for breathing
 - · Moving modulators (MLC) do not work well with moving targets
- Metal compensators do not break down...

Europe
 China
 Japan

Disadvantages of Compensator-Based IMRT

- A radiation therapist must enter the treatment room to change the IMRT compensator for each irradiation beam.
 - This is a common practice, quick, and a good way to check on the patient and make sure they are comfortable and still.
- Requires ordering or fabricating the compensators
 - 1- to 2-day turnaround (within the USA)

China

- Expendable component (the compensators) have a recurring cost
 - How this compares to the cost of acquiring and maintaining an MLC-based system depends on the patient load.

IMAT

Field shape changes dynamically during rotation. Multiple rotations may be necessary.

IMAT Delivery: C-shaped Target

From Cedric Yu

SWEDISH CANCER INSTITUTE Extraordinary care. Extraordin

IMAT - advantages

- Spreads out dose to normal tissue.
- Provides rotational IMRT with conventional MLC.
- Efficient delivery.

IMAT - disadvantages

- Complicated due to simultaneous motion of MLC leaves and gantry.
- Inverse planning is complicated due to increased number of delivery constraints.

Helical Tomotherapy

Partial Assembly of the UW Clinical Prototype

From Rock Mackie

EXEMPTING TRANSPORTED TO THE TO THE TRANSPORTED TO THE TRANSPORTED TO THE TRANSPORTED

- IMAT basics
- Efforts to revive interest in IMAT
- Commercial IMAT solutions
- Future directions for IMAT

Eight step and shoot segments...

Summed together ...

Sliding Window

From Rock Mackie

Dynamic MLC

 This 2-D Sinc Function can be delivered with the MLC pattern shown on the right

From Cedric Yu

What is IMRT?

- A delivery technique where a nonuniform intensity of radiation is delivered from each beam direction.
- By optimizing the intensity pattern delivered from each beam direction it is possible to achieving highly conformal dose distributions.

Note: Effective beamlet <u>width and height</u> is reduced due to close angular spacing and small pitch

SWEDISH CANCER INSTITUTE Extraordinary care. Extraordin

Initial IMAT Investigations @ Swedish

- Single-arc vs. multiple arc VMAT: plan quality and delivery efficiency
- Elekta VMAT vs. Helical tomotherapy
- Comparison of VMAT QA Techniques
- Impact of systematic and random error on the plan quality and delivery accuracy for VMAT and IMRT techniques.

Single vs. Multiple Arc VMAT

SWEDISH CANCER INSTITUTE

Prostate case

The single-arc plan has a total of 60 control points.The three-arc plan has 35 control points per arc (105 total).

- The V95 (target volume covered by 95% prescribed dose) are 99.1% and 99.6% for the single-arc and three-arc plans, respectively
- Delivery times are 2.5 and 5.1 minutes for single-arc and three-arc plans, respectively

The vss are so. / a and ss. / a for the single-arc and two-arc plans, respective
 Delivery times are 2.6 and 3.8 minutes for single-arc and two-arc plans, respectively

Summary fo	or Relatively	v Simp	le Cases
------------	---------------	--------	----------

			(Tren				∩àR me	anlmay	Ance			Deliv	ers time		
	V9.	5 (%)	(cGy/	fraction)	(Chart me	cGv)	uose .	MU/i	raction	(minute)					
Ireatment site	1	multi-	1	multi-	OAR	1	multi-	1	multi-	1	multi-				
	arc	arc	arc	arc	OAK	arc	arc	arc	arc	arc	arc				
lung	99.8	99.9	3.4	3.3	lung	793	791	356	412	2.8	5.5				
	-				Cord	1204	0772			_					
					bladder	2521	2750								
prostate #1	99.3	99.6	4.1	2.8	formant1	5551	5150	597	581	2.5	5.1				
					heads	2482	2560								
					rectum	1642	1591								
	00.0	9.8 100	9.8 100	100	2.2		bladder	507	500	671	640 0.0	2.0	2.6		
prostate #2 99.8	9.6 100				100	100	100 2.5	0.0				femoral heads	974	1006	5/1
partial brain	00.0	00.0	4.0	2.0	brainstem	1906	1955	0.00	070	0.4					
(GBM) #1	98.9	99.5	4.0	3.0	chiasm	554	549	252	278	2.4	0.1				
partial brain	100	100	2.0	17	brainstem	3053	3162	244	273	2.1	37				
(GBM) #2	100	100	6.V	1.7	chiasm	710	694	244	215	6.1	2.1				
					liver	1676	1709								
pancreas	98.7	99.1	4.0	3.6	RT kidney	1923	1789	363	470	2.6	3.8				
					cord	3158	3030								
		No :	signi	ficant	differen	ce			9	2% ii	ncreas				
			0						ir	deli	verv ti				
							- aron	rory u							
Single arc is preferable for relatively					elv s	simp	le c	ases							
								, .							

Head-&-Neck Case (I)

- The single-arc plan has a total of 175 control points.
- The three-arc plan has 35 control points per arc (105 total).

Swedish Executive of More Complex Cases

Trantment site	V9	5 (%)	c (cGy/	PTV fraction)	OAR me	an/max cGy)	dose	MU/	fraction	Deliv (mi	ery time nute)			
reatment site	1	multi-	1	multi-	OAR	1	multi-	1	multi-	1	multi-			
	arc	arc	arc	arc	Onac	arc	arc	arc	arc	arc	arc			
					rectum	1747	1732							
a staria	00.0	00.0	6.2	4.4	bladder	2909	2849	554	700	2.6				
pervis	20.2	33.2	0.5	4.4	femoral heads	1886	1952	504	/40	2.5				
					LT parotid	461	441							
H&N#1	97.8 99.2	97.8 99.2	99.2	99.2	5.4	5.4 4.2	RT parotid	1104	1094	439	498	4.9	5.6	
						cord	2173	2271						
		95.6 98.8					7.3 5.2	LT parotid	3037	3011				
H & N #2	95.6		7.3	7.3	5.2	5.2		5.2	RT parotid	1796	1817	507	577	2.5
										cord	3072	2723		
							brainstem	2050	1932	1				
					LT parotid	1638	1607							
H&N#3	97.2	98.9	6.8	5.4	RT parotid	5232	5311	400	481	4.8	5.4			
						cord	3362	3644						
					brainstem	3495	3229							

SWEDISH CANCER INSTITUTE Extraordinary care. Extraordin

Tomotherapy - Complex Irradiations

CANCER INSTITUTE

treatment time <u>regular 2.5cm</u> 17 minutes

Whole Abdominal Irradiation

<u>Uynamic jaw Dynamic</u>
 <u>Couch 5cm:</u> 5.5 minutes

Swedish CANCER INSTITUTE Extraordinary care. Extraordinary care. Extraordinary care.

Delivery time reduced from 8.5 to 5 minutes

Recent VMAT Developments

- Flattening filter free (FFF) VMAT
- Gated VMAT

SWEDISH CANCER INSTITUTE

Flattening Filter Free (FFF)

- Varian TrueBeam accelerators offer FFF delivery.
- When the filter is removed from the photon beam, the intensity increases by a factor of 2 for 6 MV photons and by a factor of 4 for 10 MV.
- Using FFF mode, the dose rate increases from 6 Gy/min to 14 Gy/min for 6 MV and 24 Gy/min for 10 MV beams.

Swedish CANCER INSTITUTE Examinary care. Examples of the comparison of the compariso

4 brain mets 6 Gy x 5 (frameless) Conformity index 1.2 (average) 10X FFF @ 2400 MU/minute, RapidArc Treatment time= 61 seconds

Pink = 100% (6 Gy), light blue = 50% (3 Gy)

Metastatic Breast Cancer

- 3 tumors
- 6 Gy x 5 fractions ٠
- 2 arcs (axial and vertex) •
- 10X FFF (2400 MU/min) •
- 3536 MU ٠
- Treatment time 3:12 •
- Beam time 1:50 •

SWEDISH CANCER INSTITUTE Extraordinary care. Extraordin

E. Thomas, JB Fiveash, RA Popple, manuscript in preparation. ISRS 2010

S Shen, R Popple, J Duan, X Wu, I Brezovich, "Dosimetric Evaluation of Beam-Hold Interruption in Respiratory Gated RapidArc Delivery," AAPM 2011 meeting SU-E-T-517

SWEDISH CANCER INSTITUTE Extraordinary care. Extraordin

Elekta VersaHD

- VersaHD received FDA approval April 2013
- Includes FFF and gated delivery capabilities.
- Elekta Response FDA approved in August 2013

Table 1 Lung cases (6 patients): Plan comparison between fixed-field IMRT, VMAT and HT

				Wilcoxon matched- pair signed rank test
	IMRT	VMAT	HT	р
PTV				
V95 (%)	98.5 (95.0-100)	98.5 (95.0-100)	98.0 (91.7-100)	0.375
SD (Gy)	1.4(0.7-2.1)	1.6 (0.8-2.5)	1.5 (0.7-3.2)	0.438
Lung				
Dmmn (Gy)	9.8 (2.0-17.5)	10.0 (2.2-18.0)	10.0 (2.3-17.0)	0.844
V2007 (%)	15.3 (4.5-28.3)	15.4 (4.9-28.8)	15.8 (3.8-30.0)	0.625
Cord				
D _{max} (Gy)	19.8 (4.7-39.2)	19.9 (4.1-42.2)	19.9 (3.8-41.8)	0.563
D _{mmn} (Gy)	5.6 (1.0-15.4)	5.7 (1.6-15.8)	5.3 (1.8-11.6)	0.844
Total body				
Dmean (Gy)	3.9 (1.0-9.0)	4.0 (1.3-9.3)	4.2 (1.3-8.7)	0.563
MU per fraction	569 (340-1108)	476 (348-904)		
Delivery time (minutes)	7.9 (6.3-9.5)	2.1 (2.0-2.3)	5.4 (3.4-10.0)	0.031
QA passing rate (%)	99.3 (99.2-99.4)	99.0 (98.6-99.5)	99.6 (99.5-99.7)	

Abbreviations: PTV = planning target volume; V95 = volume of PTV receiving 95% of prescription; SD = standard deviation of PTV dose; V_{c07e} = volume of structure receiving $\ge n$ Gy. QA passing rate was obtained using gamma analysis with 3 mm/3% limit. Values expressed as mean (range). The Wilcoxon matched-pair signed rank test is listed for VMAT vs. HT.

				Wilcoxon matched- pair signed rank test
	IMRT	VMAT	HT	р
PTV				
V95 (%)	98.5 (97.3-99.7)	98.7 (97.3-99.7)	98.3 (96.2-99.8)	0.063
SD (Gy)	1.0 (0.7-1.3)	1.0 (0.6-1.4)	1.2 (0.5-1.6)	0.688
Rectum				
D _{max} (Gy)	56.7 (45.0-69.1)	56.1 (45.1-67.1)	57.3 (45.0-71.0)	0.156
Dman (Gy)	25.7 (15.6-38.8)	24.5 (17.7-31.4)	26.5 (15.3-39.3)	0.688
D20% /Dpms (%)	47.2 (27.2-87.9)	48.0 (27.2-88.6)	47.9 (27.2-91.8)	1.000
Bladder				
D _{max} (Gy)	58.0 (46.8-69.5)	57.4 (46.6-70.4)	58.6 (46.1-70.3)	0.438
D _{mean} (Gy)	20.1 (5.4-28.6)	19.9 (5.1-29.1)	20.5 (5.6-28.2)	0.219
Femoral head				
D _{max} (Gy)	25.5 (16.2-41.6)	24.3 (15.4-41.4)	25.6 (16.1-42.4)	0.031
D _{mean} (Gy)	16.5 (10.1-30.1)	16.7 (9.7-33.9)	16.1 (11.2-28.8)	0.844
Total body				
Dman (Gy)	4.6 (3.3-8.1)	4.8(3.3-8.6)	4.9 (3.6-8.4)	0.313
MU per fraction	639 (595-731)	549 (449-603)		
Delivery time				
(minutes)	8.1 (7.9-8.6)	2.2 (1.9-2.7)	4.0 (3.1-4.9)	0.031

Table 2 Prostate cases (6 patients): Plan comparison between fixed-field IMRT, VMAT and HT

QA passing rate (%) 98.5 (97.6-99.3) 98.9 (98.5-99.5) 99.9 (99.9-99.9)

Abbreviations: $D_{axi} = minimal does to n% of structure, <math>D_{axi} = prescription to PTV$; other abbreviations as in Table I. Values expressed as mean (range). The Wilcoxon matched-pair signed rank test is listed for VMAT vs. HT.

Table 3 HN cases (6 patients): Plan comparison between fixed-field IMRT, VMAT and HT

	IMPT	VMAT	HT	Wilcoxon matched- pair signed rank test
DIRY	IMACI	THAT		F
V05 (94)	09 3 (06 7-00 6)	08.6 (07.1-00.7)	08.0 (08.4-00.7)	0.625
SD (Gv)	1.6 (1.4-1.7)	1.6 (0.9-2.1)	1.5 (1.1-2.0)	0.844
Spinal cord		()		
D _{max} (Gy)	26.8 (18.1-36.6)	27.3 (20.8-39.9)	28.0 (14.4-34.4)	1.000
D _{mean} (Gy)	13.2 (9.5-20.8)	13.3 (8.5-23.6)	11.7 (8.6-16.4)	0.438
Parotid				
D _{max} (Gy)	47.8 (27.3-61.6)	46.6 (25.3-62.6)	48.5 (26.8-65.9)	0.156
Dmean (Gy)	19.0 (13.0-24.8)	17.9 (12.6-24.8)	16.5 (10.5-22.8)	0.094
Brain stem				
D _{max} (Gy)	30.4 (13.7-42.7)	30.6 (16.0-47.0)	31.1 (6.3-46.4)	0.844
Dmean (Gy)	11.4 (2.3-18.9)	11.3 (2.7-20.2)	9.8 (1.8-19.0)	0.031
Total body				
D _{mean} (Gy)	9.9 (5.3-18.1)	9.7 (5.5-17.2)	10.0 (5.7-18.0)	0.156
MU per fraction	777 (607-1229)	620 (495-683)		
Delivery time (minutes)	11.1 (10.9-12.4)	4.6 (3.7-6.0)	7.0 (6.0-9.1)	0.031
QA passing rate (%)	97.7 (96.1-99.3)	98.3 (96.0-99.8)	99.3 (99.0-99.6)	

Values expressed as mean (range). The Wilcoxon matched-pair signed rank test is listed for VMAT vs. HT.

Case#2 Partial Brain: effect of couch kick

IMRT plan spares more Brain Stem and Chiasm.

Case#2 Partial Brain: effect of couch kick

Coronal View

IMRT: 6 fields (one couch kick) VMAT (Single-arc: no couch kick)

162

· IMRT plan spares more brain stem and chiasm.

VMAT
 better target dose uniformity

+ IMRT \downarrow volume receiving a low dose.

163