

RP Dosimetric Quantities and Units Tissue Reactions Dose to Tissue = Absorbed Dose * RBE RBE: radiobiological effectiveness differs for different biological endpoints and different tissues or organs The SI unit is J kg-1 and the special name is gray (Gy)

RP Dosimetric Quantities and Units Stochastic Effects (Sv) Equivalent Dose, H_T , in a tissue T: $H_T = \Sigma_R w_R D_{T,R}$ w_R is the radiation weighting factor, which accounts for the detriment caused by different types of radiation relative to photon irradiation $D_{T,R}$ is the absorbed dose averaged over the tissue T due to radiation R $w_R \text{ values are derived from in vivo and in vitro RBE studies}$ They are independent of dose and dose rate in the low dose region

Radiation type and energy range	$w_{\rm R}$
Photons	1
Electrons and muons	1
Protons (1991, 2007), pions (2007)	2
Alpha particles, fission fragments, heavy ions	20
Neutrons, energy < 10 keV	
10 keV to 100 keV	Fu
> 100 keV to 2 MeV	ntinuou unction
> 2 MeV to 20 MeV	non
> 20 MeV	

RP Dosimetric Quantities and Units Stochastic Effects (Sv)

Effective Dose, E

$$\mathbf{E} = \Sigma_{\mathbf{T}} \mathbf{w}_{\mathbf{T}} \mathbf{H}_{\mathbf{T}} = \Sigma_{\mathbf{T}} \Sigma_{\mathbf{R}} \mathbf{w}_{\mathbf{T}} \mathbf{w}_{\mathbf{R}} \mathbf{D}_{\mathbf{R},\mathbf{T}}$$

W_T represents the relative contribution of that tissue or organ to the total detriment resulting from uniform irradiation of the body

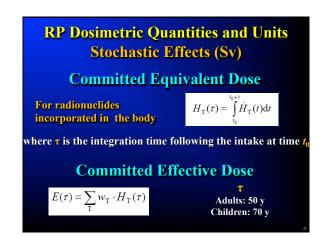
$$\Sigma_{\rm T} w_{\rm T} = 1$$

A uniform dose distribution in the whole body gives an effective dose numerically equal to the radiationweighted dose in each organ and tissue of the body

Tissue Weighting Factors (ICRP 103)		
Tissue	w_{T}	$\sum w_1$
Bone-marrow (red), Colon, Lung, Stomach, Breast, Remainder Tissues*	0.12	0.72
Gonads	0.08	0.08
Bladder, Oesophagus, Liver, Thyroid	0.04	0.16
Bone surface, Brain, Salivary glands, Skin	0.01	0.04
	Total	1.00
 Remainder Tissues: Adrenals, Extrathoracic region, Gall Kidneys, Lymphatic nodes, Muscle, Oral mucosa, Pancreas, intestine, Spleen, Thymus and Uterus/cervix 		

RP Dosimetric Quantities and Units

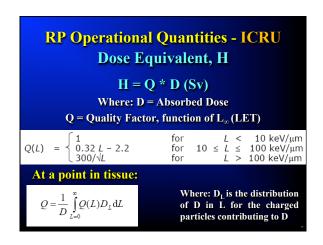
Activity, A

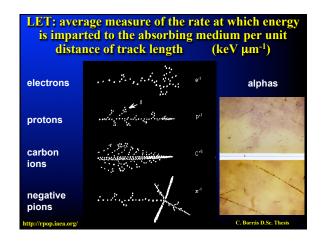

The activity A of an amount of a radionuclide in particular energy state at a given time t is

$$A = dN/dt$$

where d N is the expectation value of the number of spontaneous nuclear transitions from that energy state in the time interval d t

The SI unit of activity is the Becquerel (Bq)


$$1 \text{ Bq} = 1 \text{ s}^{-1}$$



Limitations of Equivalent and Effective Doses

- Are not directly measurable
- Point quantities needed for area monitoring (in a non-isotropic radiation field, effective dose depends on the body's orientation in that field)
- Instruments for radiation monitoring need to be calibrated in terms of a measurable quantity for which calibration standards exist

Operational protection quantities are needed!

Task	Operational quantities for				
Idak	·				
	area monitoring	individual monitoring			
Control of effective dose	ambient dose equivalent $H^*(10)$	personal dose equivalen $H_p(10)$			
Control of skin dose	directional dose	personal dose equivalen			
H*(10) and H ₂ (10	equivalent $H'(0.07, \Omega)$ $ = \text{photons} > 12 \text{ ke}^{2} $	H _p (0.07)			
	equivalent $H'(0.07, \Omega)$) – photons > 12 ke' and β particles and do	V and neutrons			
) – photons > 12 ke	V and neutrons			
$H_{\rm p} (0.07) - \alpha$ and) – photons > 12 ke ^o nd β particles and do	V and neutrons uses to extremities			
$H_{ m P}$ (0.07) $ lpha$ an Ω in RP $lpha$) – photons > 12 ke and $β$ particles and do $H_p(0.03)$	V and neutrons oses to extremities Instead,			

RP Dosimetric Quantities and Units
Stochastic Effects
Collective Effective Dose, S
(due to Individual Effective Doses E_1 and E_2) $S(E_1, E_2, \Delta T) = \int_{E_1}^{E_2} E \, \frac{dN}{dE} \, dE$ • d N / d E: number of individuals who experience an effective dose between E and E + d E• ΔT specifies the time period within which the effective doses are summed

System of Quantities for Radiological Protection Absorbed dose, D **Dose Quantities Operational** defined in the body Quantities For external exposure Equivalent dose, H_T, in an Dose quantities for organ or tissue T area monitoring individual monitoring Effective dose, E For internal exposure Committed doses. Activity quantities in $H_T(\tau)$ and $E(\tau)$ combination with biokinetic models and Collective effective dose, S computations

RP Dosimetric Quantities and Units

E is calculated averaging gender, age and individual sensitivity

Caveats

Effective Dose should not be used for

- ▲ Retrospective dose assessments
- ▲ Estimation of specific individual human exposures and risks
- ▲ Epidemiological studies without careful consideration of the uncertainties and limitations of the models and values used

RP Dosimetric Quantities and Units Caveats

Dose to Individuals

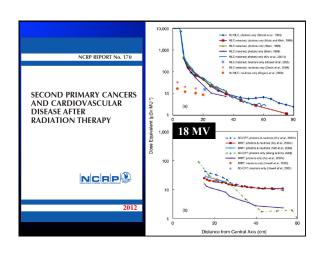
Absorbed doses to organs or tissues should be used with the most appropriate biokinetic parameters, biological effectiveness of the ionizing radiation and risk factor data, taking into consideration the associated uncertainties.

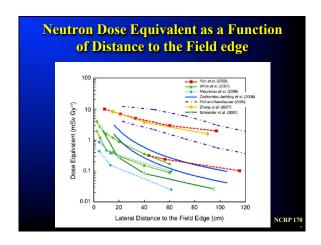
Medical exposures fall in this category!

Effective Dose vs Organ Doses in Medical Exposures

Effective Dose is an adequate parameter to intercompare doses from different radiological techniques

However, to assess individual risks it is necessary to determine organ doses


POINT/COUNTERPOINT States of a client for the contraction of the contract of


Methods for Determining Organ and Tissue Doses

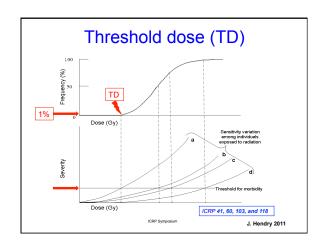
- ▲ Measurements in physical phantoms
- ▲ Monte Carlo radiation transport calculations

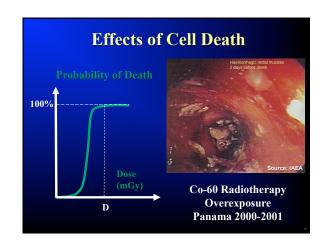
In radiation therapy, the TPS can calculate organ doses

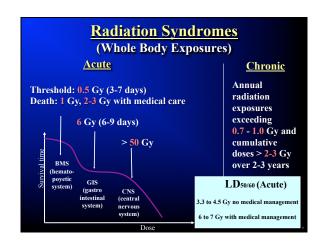
How well?

Physics in Medicine and Biology > Volume 57 > Number 16
R Kaderka et al 2012 Phys. Med. Biol. 57 5059 doi:10.1088/0031-9155/57/16/5059

Out-of-field dose measurements in a water phantom using different radiotherapy modalities

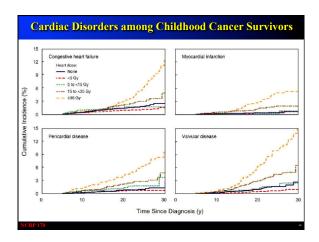

Physics in Medicine and Biology > Volume 59 > Number 8
C La Tessa et al 2014 Phys. Med. Biol. 59 2111 doi:10.1088/0031-9155/69/8/2111


Characterization of the secondary neutron field produced during treatment of an anthropomorphic phantom with x-rays, protons and carbon ions


Physics in Medicine and Biology > Volume 57 > Number 19
Estimation of neutron-equivalent dose in organs of patients undergoing radiotherapy by the use of a novel online digital detector
Fachnes-Dobiodo¹², C Domingo³, F Gomez⁴, B Sánchez-Nieb⁵, J L Muñiz⁶, M J García-Fusto³, M R Expósito², R Barquero⁷, G Hartmann⁷, J A Terron¹, J Pena¹, R Medicule², F Couren of Patames of Patients (La Carella ³, E Gallego ³, R Capole ³, O Patames ³, J L Lagares⁵, X Conzález-Soto⁶, F Sansaioni⁶, R Colinenaes ⁵, K Alparon⁵, E Gallego ³, R Capole ³, O Patames ³, J L Lagares⁵, X Conzález-Soto⁶, F Sansaioni⁶, R Colinenaes ⁵, K Alparon⁵, E Gallego ⁵, R Capole ³, O Patames ⁵, J L Lagares⁵, X Conzález-Soto⁶, F Sansaioni⁶, R Colinenaes ⁵, K

THE AIM OF RADIATION PROTECTION To prevent (deterministic) harmful tissue effects To limit the probability of stochastic effects to levels deemed to be acceptable

Tissue Harmful (Deterministic) Effects Radiation effects for which generally a threshold level of dose exists above which the severity of the effect is greater for a higher dose. Stochastic Effects Radiation effects, generally occurring without a threshold level of dose, whose probability is proportional to the dose and whose severity is independent of the dose.

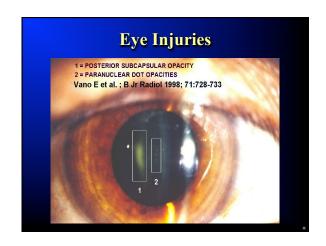


Radiation-induced Cardiovascular Disease

- ▲ Radiotherapy well documented side effect of irradiation for breast cancer, Hodgkin's disease, peptic ulcers & others.
- ▲ A-bomb data statistically significant dose-related incidence.
- ▲ Chernobyl some evidence in the Russian study on emergency workers for a doserelated increase.

From current evidence, a judgement can be made of a threshold acute dose of about 0.5 Gy (or 500 mSy) for both cardiovascular disease and cerebrovascular disease. On that basis, 0.5 Gy may lead to approximately 1% of exposed individuals developing the disease in question, more than 10 years after exposure. This is in addition to the high natural incidence (circulatory diseases account for 30-50% of all deaths in most developed countries).

ICRP 118


Irradiation of Gonads Threshold doses for approximately 1% incidence in morbidity Organ/tissue Highly Annual Acute fractionated develop (chronic) effect (Gy) (2 Gy per dose rate for fraction) or many years (Gy y⁻¹) equivalent protracted exposures (Gy) Testes 3-9 weeks ~0.1 Temporary 2.0 sterility Ovaries < 1week ~3 6.0 >0.2 CRP 118

	shold d % inci			roxima rbidity	tely
Effect	Organ/tissue	Time to develop effect	Acute exposure (Gy)	Highly fractionated (2 Gy per fraction) or equivalent protracted exposures (Gy)	Annual (chronic) dose rate for many years (Gy y ⁻¹)
Main phase of skin reddening	Skin (large areas)	1-4 weeks	<3-6	30	NA
Skin burns	Skin (large areas)	2-3 weeks	5-10	35	NA
Temporary hair loss	Skin	2-3 weeks	~4	NA	NA
Late atrophy	Skin (large areas)	> 1 year	10	40	NA
Telangiectasia @ 5 years	Skin (large areas)	> 1 year	10	40	NA
ICRP 118					4

Increased Risk of Cortical and Posterior Subcapsular Cataract Formation Reanalysis of Atomic Bomb Survivors A Cohort Of Patients With Chronic Exposure to Low-dose-rate Radiation From Cobalt-60 Contaminated Steel in their Residences

A	Studies of Children Exposed to	Low	Doses	from
	the Chernobyl (Ukraine) Accide	ent		

- **▲ Chernobyl Clean-up Workers**
- **▲ Commercial Airline Pilots**
- **▲** Space Astronauts

Threshold doses for approximately 1% incidence in morbidity									
Effect	Organ/tissue	Time to develop effect	Acute exposure (Gy)	Highly fractionated (2 Gy per fraction) or equivalent protracted exposures (Gy)	Annual (chronic) dose rate for many years (Gy y ⁻¹)				
Cataract (visual impairment)	Eye	>20 years	~0.5	~0.5	~0.5 divided by years duration				

Dose Limits – ICRP 1991, 2007

For occupational exposure of workers over the age of 18 years

- An effective dose of 20 mSv per year averaged over five consecutive years (100 mSv in 5 years), and of 50 mSv in any single year;
- An equivalent dose to the lens of the eye of 150 mSv in a year;
- An equivalent dose to the extremities (hands and feet) or the skin of 500 mSy in a year

For apprentices (16-18 years of age)

effective dose of 6mSv in a year.

Dose Limits – ICRP 2011

For occupational exposure of workers over the age of 18 years

- An effective dose of 20 mSv per year averaged over five consecutive years (100 mSv in 5 years), and of 50 mSv in any single year;
- An equivalent dose to the lens of the eye of 20 mSv in a year;
- An equivalent dose to the extremities (hands and feet) or the skin of 500 mSv in a year

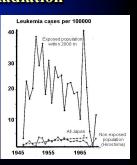
For apprentices (16-18 years of age)

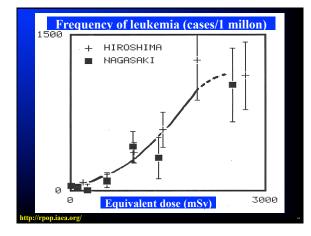
effective dose of 6mSv in a year.

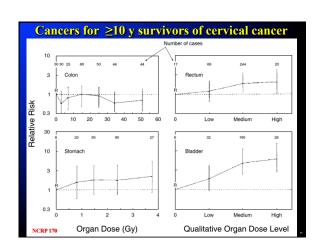
Harmful Tissue Effects

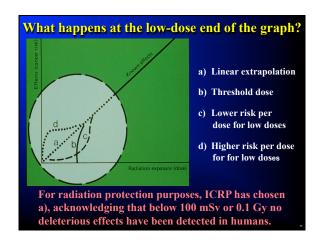
Radiation effects for which generally a threshold level of dose exists above which the severity of the effect is greater for a higher dose.

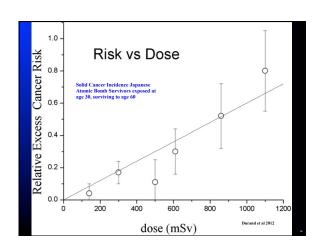
Stochastic Effects


Radiation effects, generally occurring without a threshold level of dose, whose probability is proportional to the dose and whose severity is independent of the dose.


Cancer

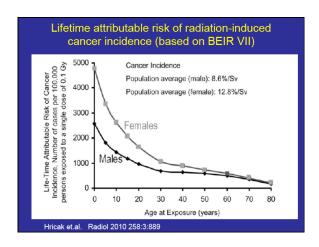

Heritable Effects

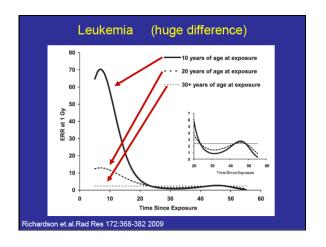

Stochastic Effects of Ionizing Radiation

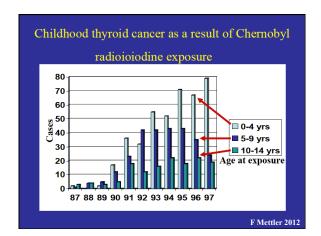


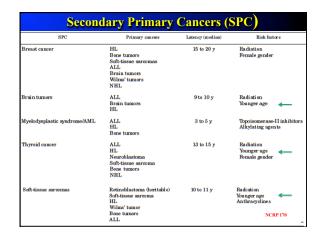
The Linear-Non-Threshold (LNT) Hypothesis Prevails regardless of New Evidence on:

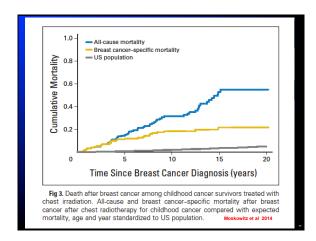
- ▲ Cellular adaptive responses
- The relative abundance of spontaneously arising and low dose-induced DNA damage
- ▲ The existence of the post-irradiation cellular phenomena
 - Induced genomic instability
 - Bystander signaling
- **▲** Tumor-promoting effects of protracted irradiation
- Immunological phenomena


Dose and Dose-Rate Effectiveness Factor (DDREF) A judged factor that generalizes the usually lower biological effectiveness [per unit of dose] of radiation exposures at low doses* and low dose rates** as compared with exposures at high doses and high dose rates ICRP is taking a value of 2 for the DDREF BEIR VII chose a value of 1.5 * 10 mGy ** 5 mGy/min




ICRP Detriment-Adjusted Nominal Risk Coefficient for Cancer (10⁻² Sv⁻¹ – Percent per Sievert)


Exposed Population	ICRP 103 (2007) Cancer Induction	ICRP 60 (1991) Cancer Fatality
Whole	5.5	6.0
Adult	4.1	4.8


	Age at Exposure (years)										
Cancer Site	0	5	10	15	20	30	40	50	60	70	80
Males											
Stomach	76	65	55	46	40	28	27	25	20	14	7
Colon	336	285	241	204	173	125	122	113	94	65	30
Liver	61	50	43	36	30	22	21	19	14	8	3
Lung	314	261	216	180	149	105	104	101	89	65	34
Prostate	93	80	67	57	48	35	35	33	26	14	5
Bladder	209	177	150	127	108	79	79	76	66	47	23
Other	1123	672	503	394	312	198	172	140	98	57	23
Thyroid	115	76	50	33	21	9	3	1	0.3	0.1	0.
All solid	2326	1667	1325	1076	881	602	564	507	407	270	126
Leukemia	237	149	120	105	96	84	84	84	82	73	48
All cancers	2563	1816	1445	1182	977	686	648	591	489	343	174
Females											
Stomach	101	85	72	61	52	36	35	32	27	19	11
Colon	220	187	158	134	114	82	79	73	62	45	23
Liver	28	23	20	16	14	10	10	9	7	5	2
Lung	733	608	504	417	346	242	240	230	201	147	77
Breast	1171	914	712	553	429	253	141	70	31	12	4
Uterus	50	42	36	30	26	18	16	13	9	5	2
Ovary	104	87	73	60	50	34	31	25	18	11	5
Bladder	212	180	152	129	109	79	78	74	64	47	24
Other	1339	719	523	409	323	207	181	148	109	68	30
Thyroid	634	419	275	178	113	41	14	4	1	0.3	0.
All solid	4592	3265	2525	1988	1575	1002	824	678	529	358	177
Leukemia	185	112	86	76	71	63	62	62	57	51	37
All cancers	4777	3377	2611	2064	1646	1065	886	740	586	409	214

