Proton Stereotactic Radiotherapy: Clinical Overview

Brian Winey, Ph.D. Physicist, MGH Assistant Professor, HMS

Acknowledgements

 Radiation Oncologists and Physicists at various institutions (MGH, MDACC, PSI, Clatterbridge, many more)

SRS History

- Gamma Knife original photon treatment (1950's)
- Ten years later (1960's): proton radiosurgery
- Linac based begun in 1980's and Cyberknife later
- Thousands of patients treated with Photon SRS—clinically proven technique

HARVARD

MEDICAL SCHOOL

Stereotactic Proton Therapy

- Limited fractions (1-5)
- Higher doses/fraction
- Often smaller treatment volumes and smaller field sizes
- Magnified effects of random uncertainties

Why Proton SRT?

Generally with respect to photon SRT

- Distal Edge
- Conformal for concave/complex geometries
- Penumbra**
- Integral Dose
- Higher TCP/Lower NTCP

Dose Comparisons

Complex Geometries

Penumbra

- Proton Penumbra can be sharper than photons but...
 - Air Gap
 - Range Compensator
 - Apertures
 - Spot Size
 - Beam Optics

Integral Dose

Integral Dose

- The V40% for protons is smaller than photons
- Due to the incorporation of uncertainties in planning, the conformality is tighter with photons for most SRT targets
- Abnormally shaped targets or targets close to an OAR can have tighter conformality
- Clinical Significance?

HARVARD

MEDICAL SCHOOL

Proton SRT for Benign Cases: Secondary Cancer Risks

Acoustic \rightarrow Sarcomatous Hanabusa, 2001 Acoustic \rightarrow Glioblastoma Shamisa, 2001 $AVM \rightarrow Glioblastoma$ Kaido, 2001 Acoustic \rightarrow Meningiosarcoma Thomsen, 2000 NF2 \rightarrow Malig n. sheath (3 cases) Baser, 2000 NF2 \rightarrow malignant meningioma Baser, 2000 NF2 \rightarrow Malignant ependymoma Baser, 2000 Mening → Glioblastoma Yu, 2000 Acoustic → Malig Schwannoma Shih, 2000 Cav hem \rightarrow Glioblastoma Salvati, 2003 Acromeg \rightarrow Meningioma Loeffler, 2003 Acromeg \rightarrow Vestibular Schwannoma Loeffler, 2003 → Meningioma Sheehan 2006 AVM Many more studies...

	Radiographic changes						
	Risk of 2nd cancer	Right temporal lobe		Left temporal lobe		Clinical symptoms	
		EUD (Gy)	NTCP (%)	EUD (Gy)	NTCP (%)	NTCP (%)	
SRT	32.1	23	<0.1	28	<0.1	<0.1	
2-field photon	5.7	48	1.3	48	1.2	13	
3-field photon	11.2	38	< 0.1	40	0.1	2	
IMRT	26.8	34	< 0.1	37	<0.1	1	
2-field proton	1.5	30	< 0.1	35	<0.1	< 0.1	
3-field proton	4.3	29	< 0.1	35	< 0.1	< 0.1	
4-field proton	6.1	27	< 0.1	34	<0.1	< 0.1	
5-field proton	6.8	26	< 0.1	34	<0.1	<0.1	

Winkfield, et al, 2011

Integral Dose and Risks: Mets

- Liver and lung toxicity
- Mediastinum
- Stomach and intestinal tract
- Spinal Cord
- Optics
- Brain dose and cognitive health

What is *not* a benefit of protons versus photon SRT?

20%	1.	Distal dose reduction
20%	2.	Lower NTCP
20%	3.	Conformal for Complex Geometries
20%	4.	Less uncertainty in the dose delivery
20%	5.	Lower integral dose.

Uncertainties?

- Range uncertainties (CT, SPR, Motion, Setup, Geometric Patient Daily Variations)
- Motion-Miss Targets
- Field Size Effects
- Penumbra
- Online Imaging Limited
- Affect the conformality (Rx dose)

Proton range changes: Cranial SRT

- Fluids in sinuses
- Scattering from heterogeneities
- Setup Uncertainties
- Air gap
- Onyx for AVM
 - Artifacts
 - WET

Intrafractional Motion

120

100

80 Counts

60

40

20

0L -2

-1

Lei Dong, Ph.D. Impact on MFO Planning Less impact on Passive Scattered

Cranial Intrafractional Motion

0

AP (mm)

-1

2

Perils Due to MCS

- Multiple Coulomb Scattering (MCS)
- Range Uncertainties, especially along a heterogeneous boundary
- Motion Uncertainties in Heterogeneous Materials
- Differences in Output, PDD, and Penumbra compared to Photons

Liver Motion

HARVARD MEDICAL SCHOOL

LET/RBE

Danger of the distal edge

Uncertainty Mitigation

- What do we do with all of this information:
 - Margins: Distal/Proximal
 - Beam angle selection
 - Smearing
 - Feathering
 - Gating
 - OARs

MASSACHUSETTS

GENERAL HOSPITAL

RADIATION ONCOLOGY

HARVARD

MEDICAL SCHOOL

Beam Angle Selection

1. Avoid beam entrance angles along and through heterogeneous boundaries

- 2. Avoid distal edge sparing.
- 3. Use multiple beams to reduce uncertainty of a single beam!

OARs

- AVOID distal edge sparing!
- If unavoidable, use multiple fields to spread the risk and reduce the dose to the OAR if there is an error.

Gating

 Gating can greatly reduce the range uncertainties of targets close to the diaphragm where motion is typically the greatest

Large Margins: Range, Motion, Smearing

What is the best method to minimize the effects of dose delivery uncertainties in proton SRT?

20%	1.	Increased image guidance
20%	2.	Use multiple beams
20%	3.	Use a single beam
20%	4.	Increase the margins
20%	5.	If it moves, don't treat it.

Using Multiple Beams

- Spreads uncertainty due to range, patient setup, LET, and patient motion
- Difference in lateral and distal uncertainties
- Increases conformality for both scanned and scattered delivery
- Increased Robustness

Patient Setup

- Immobilizations similar to photons
 - Vac Lock bags
 - Masks and Frames
- Need to be aware of proton WET
- Image guidance:
 - Most 2D currently available
 - CT and CBCT coming soon
 - Patient motion, target motion, gantry wobble, Apertures, etc.

Routine QA

- Some QA common to Photons:
 - Output, flatness, symmetry, mechanical, isocentricity, etc.
- Differences:
 - Energy/Range dependent variables and device sensitivities
 - Machine specific factors (timing, feedback, scattering devices, etc)
 - Scanning versus Scattering

Treatment Sites

- Cranial and ocular targets are the most documented and historically most common
- Spines treated later (attached to rigid body surrogate)
- Recently: Body sites of lung, liver and pancreas

HARVARD

MEDICAL SCHOOL

Cranial Patients Treated

- Benign Neoplasms:
 - Acoustic Neuromas
 - Meningiomas
 - Pituitary Adenomas
- Arteriovenous Malformations
- Metastatic Lesions
 - Multiple Lesions
 - Close proximity to surface or critical structures (optics, brainstem)
- Eyes: very high LC

HARVARD

MEDICAL SCHOO

Extra-cranial Patients Treated

- Spine
 - Mets
 - Small primary lesions
- Lung
 - Multiple trials
 - Reduced V5 and V20
 - Reduces dose to contralateral lung
- Liver: Reduced liver toxicity
- Pancreas: Reduced digestive tract dose

HARVARD

MEDICAL SCHOOL

Which Proton SRT site is the most technically challenging?

20%	1.	Eyes
20%	2.	AVM
20%	3.	Spine
20%	4.	Lung
20%	5.	Pituitary

Lung Challenges

- Motion
- Density variations
- Range uncertainties
- Treatment planning
- Image Guidance
- OARs

G. Chen

Lung Challenges

- Motion
- Density variations
- Range uncertainties
- Treatment planning
- Image Guidance
- OARs
- Robustness
- Interplay

Robustness

- Include probability estimates in the treatment planning optimization
- Reduce high gradients in close proximity to OARs
- Include Range Uncertainties, Setup Uncertainties, and Motion

Summary

- Proton SRT is a viable option SRT
- Benign cases probably have the most benefits with protons → Integral Dose, late effects
- Malignant
 - Close proximity to OARs/Quality of life or necrosis concerns
 - Multiple brain metastases: is quality of life affected?
 - Volume toxicities in the body
- Currently, less conformal due to uncertainties:
 - Online range verification
 - Robust planning
 - Patient Imaging

Thank You!

http://gray.mgh.harvard.edu

